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a b s t r a c t

We present a Model Integrated Meshless Solver (MIMS) tailored to solve practical large-scale industrial
problems. This is accomplished by developing a robust meshless technique as well as a comprehensive
model generation procedure. By closely integrating the model generation process into the overall solution
methodology, the presented techniques are able to fully exploit the strengths of the meshless approach to
achieve levels of automation, stability, and accuracy currently unseen in the area of engineering analysis.
Specifically, MIMS implements a blended meshless solution approach which utilizes a variety of shape
functions to obtain a stable and accurate iteration process. This solution approach is then integrated with a
newly developed, highly adaptive model generation process which employs a quaternary triangular surface
discretization for the boundary, a binary-subdivision discretization for the interior, and a unique shadow
layer discretization for near-boundary regions. Together, these discretization techniques are able to achieve
directionally independent, automatic refinement of the underlying model, allowing the method to generate
accurate solutions without the need for intermediate human involvement. In addition, by coupling the model
generation with the solution process, the presented method is able to address the issue of ill-constructed
geometric input such as small features, poorly formed faces, and other such pathologies often generated from
solid models in the course of design and in the end to provide an intuitive, yet powerful approach to solving
modern engineering analysis problems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There are numerous numerical techniques capable of solving
partial differential equations within the framework of engineering
analysis, and, most commonly, industrially relevant numerical tech-
niques rely on structured connectivity between nodes to define the
problem geometry. As such, these techniques are generally classified
as mesh-based techniques (for their use of a structured connectivity
mesh). Finite difference, finite element, and finite volume methods
may all be broadly placed into this category of solution techniques.
Although mesh-based methods have proven themselves capable for
a wide range of problem domains, there is still the undesirable
responsibility of having to define a connectivity within the solution
domain. Despite efforts to automate the mesh generation process, a
considerable amount of time and human effort is still spent prepar-
ing and meshing the computational model when presented with a
problem consisting of complex geometry.

In an attempt to eliminate the need for the underlying nodal
connectivity, some researchers have turned to the area of meshless

and mesh-reduction methods [1–7]. These methods, which seek to
replace the underlying structured connectivity with an unstructured
interpolation scheme, have shown considerable promise in many
application areas. However, they have failed, as of yet, to provide
competition to more conventional mesh-based approaches when
applied to real-world, industrially relevant applications. This may
largely be attributed to the relative youth of the field; however, it
may also be caused by the focus given by many meshless methods
researchers to generating new meshless techniques, while failing to
address the underlying cause for concern in model discretization.
This failure to address the underlying issues of mesh generation has
resulted in a general lack of practicality of the field and has largely
relegated meshless methods, at least for the near future, to academic
endeavors and specialized application domains.

Despite the inability of meshless methods to thus far out-
compete more traditional mesh-based techniques, there have been
considerable advances within the field. Modern meshless imple-
mentations are generally at least as efficient as unstructured
mesh-based techniques and therefore have reached the solution
potential of more traditional approaches. It is for this reason that
the focus of this paper is to present a meshless methodology and
solution approach which builds upon current meshless research
whose aim is to allow analysis of industrially relevant problems.
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At the core of this approach is a collocation-based meshless method
[7–24] which has been developed to be both robust as well as
accurate under a variety of nodal configurations. This is accomplished
through the use of a unique blend of existing meshless shape
functions and development of a point distribution process specifically
designed to take advantage of the liberties granted by the meshless
techniques. Through close integration of the model generation and
solution process, the Model Integrated Meshless Solver (MIMS) is
able to specifically address the underlying issues which make mesh
generation such a time consuming and tedious process. In addition,
this integration allows for a highly adaptive and robust system
capable of efficiently evolving both the solution, as well as the
underlying discretization with no human interaction.

The organization of this paper is as follows, Section 2 will
present an overview of the localized collocation meshless method
(LCMM) implementation used throughout this paper. Although full
details are omitted for brevity (interested readers may follow
pertinent references in that section), a general outline of the goal
and procedures will be presented, allowing the reader to appreci-
ate the remaining work. Section 3 will present the model genera-
tion process that has been developed as part of this effort, and
represents the major advancement to the state-of-the-art in
meshless research. Together with the adaptive refinement process
presented in Section 4, the model generation procedure is what
allows the MIMS method to achieve levels of robustness and
accuracy competitive with currently available analysis packages.
Once all necessary components of the MIMS method have been
described, Section 5 will then present an important implementa-
tion detail in the shape function selection process. Finally, an
industrial case study will be performed to illustrate a comparative
example to a commercially available solution package and conclu-
sions will be presented.

2. Meshless implementation overview

Most papers regarding meshless methods focus primarily on
particular implementation details (shape functions, interpolating
kernels, governing equations, etc.) and seek to demonstrate how
the described techniques exhibit solution accuracy, speed, and
robustness. However, as has already been pointed out, there has
been little focus on the model generation procedures and as such,
that will be the primary focus of this paper. That being said, it is
still important to provide an overview of the meshless implemen-
tation used in MIMS and how it has been designed to integrate
within the overall framework.

When approaching meshless methods from a practical point of
view, it should be clear that there are many different techniques
which may be utilized to obtain a capable method. However, the
goal of this research is not simply to develop a capable method,
but to develop a general solution methodology able to compete
against more traditional methods such as finite element and finite
volume. To accomplish this, we must address two distinct pro-
blems with mesh-based techniques, (1) generating the necessary
meshes is a time consuming process involving considerable
human interaction, and (2) solution quality can be highly depen-
dent on the quality of the mesh. Interestingly enough, it is not the
direct elimination of the underlying mesh which allows meshless
methods to solve these issues (indeed, few would disagree that
solution quality is still dependent on the quality of the underlying
nodal distribution with meshless methods), instead the liberties
that are granted during point distribution are what facilitates
the ease of use and solution generality. This is a point often
missed, and consequently, so is the fact that the underlying
point distribution techniques are arguably as important as the
methods themselves. It is the point generation liberties granted by

meshless methods that provide their advantage over mesh-based
techniques.

To best take advantage of these so-called point generation
liberties, the authors have chosen to use a collocation-based
meshless approach to serve as the foundation of the solution
mechanism [7–24]. Collocation was chosen for several reasons, the
first being that it is a point-based approach, and as such, can be
applied directly to a solution domain without special considera-
tion for boundary condition application, as is often the case when
utilizing a non-interpolating approximation [1]. The second reason
for choosing collocation was due to the fact that collocation
techniques can be formulated such that their computational time
and memory requirements are kept at a minimum (due to the
local nature of the formulations). The final reason is that colloca-
tion allows for the use of a variety of interpolation schemes in
order to develop the underlying shape functions for field and
derivative evaluation. Understanding that the meshless method
will utilize collocation to formulate the updating scheme for the
governing equations, the next step was to decide on appropriate
shape functions to represent the underlying solution field and its
derivatives. It is in this respect that the current method departs
from current techniques in that no single interpolating method is
used to construct the necessary shape functions. Instead, a blend
of moving least squares [4], radial basis function interpolation
[5–11], and virtual finite differencing [18–24] is utilized to obtain a
method that is both stable and accurate. This departure allows for
a method which is not married to any particular interpolation
scheme, and as such may take advantage of the relative strengths
and weaknesses of each technique. We now briefly review all
three methods as they apply to transient heat conduction.

2.1. The localized collocation meshless method (LCMM) framework

The meshless formulation begins by defining a set of data
centers, NC, comprised of points on the boundary, NB, and points
on the interior, NI. These data centers will serve as collocation
points for the localized expansion of the different field variables in
the domain, Ω, and on the boundary, Γ (see Fig. 1). The essential
difference between boundary points and internal points is simply
that boundary conditions will be applied at the first while
governing equations will be applied at the last. We apply the
LCMM to the diffusion equation for the field variable, ϕ, in a
generalized coordinate system, x, time, t, and the diffusion
coefficient, κ, will be taken into consideration as the governing
equation valid in the domain, Ω, as follows:

∂ϕ
∂t
ðx; tÞ ¼ κ∇2ϕðx; tÞ ð1Þ

In addition, a set of generalized boundary conditions for the
variable, ϕ, on the boundary, Γ, is given by

β̂1
∂ϕ
∂n

þ β̂2ϕ¼ β̂3 ð2Þ

where β̂1, β̂2, and β̂3 are the imposed coefficients of ðx; tÞ that
dictate the boundary condition type and constrain values. A linear

Ω

Boundary data center

Internal data center

Γ

Fig. 1. Scattered point distribution in a generalized domain.
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