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This paper solves a recently proposed industrial benchmark test (Sarler et al., 2012 [1]) by a meshless
method. The physical model is established on a set of macroscopic equations for mass, energy,
momentum, turbulent kinetic energy, and dissipation rate in two dimensions. The mixture continuum
model is used to treat the solidification system. The mushy zone is modeled as a Darcy porous media
with Kozeny-Karman permeability relation, where the morphology of the porous media is modeled by
a constant value. The incompressible turbulent flow of the molten steel is described by the Low-
Reynolds-Number (LRN) k-¢ turbulence model, closed by the Abe-Kondoh-Nagano closure coefficients
and damping functions. The numerical method is established on explicit time-stepping, collocation with
multiquadrics radial basis functions on non-uniform five-nodded influence domains, and adaptive
upwinding technique. The velocity-pressure coupling of the incompressible flow is resolved by the
explicit Chorin’s fractional step method. The advantages of the method are its simplicity and efficiency,
since no polygonisation is involved, easy adaptation of the nodal points in areas with high gradients,
almost the same formulation in two and three dimensions, high accuracy and low numerical diffusion.
The results are carefully presented and tabulated, together with the results obtained by ANSYS-Fluent,
which would in the future permit straightforward comparison with other numerical approaches as well.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Continuous casting [1,2] (Fig. 1) is the most common process in
the production of steel. The process starts by pouring the molten
metal into the water cooled mold, where cooling intensity is high
enough to solidify steel around the inner surface of the mold and
generates the solid shell with molten metal in the center of strand.
After several minutes, the strand is pulled into the secondary
cooling system, which contains water spray systems with much
smaller cooling intensity compared to the internally water cooled
mold, and rollers, which support and guide the strand up to the
end of the casting machine. The quality of the cast product (round
or square billets, blooms or slabs) depends mainly on the process
parameters in the mold region, where complex physical phenom-
ena occur (Fig. 2). The liquid metal, poured with a high velocity
from the submerged entry nozzle (SEM) into the mold, produces
turbulent flow with several re-circulating zones. Large heat fluxes,
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extracted from the mold, are a consequence of very high flow rates
of the cooling water in the mold channels. It is impossible to
measure temperature and velocity field inside the strand due to
very high temperatures of steel and inaccessibility of the region
during the process. Respectively, the numerical models [3] help us
to better understand the casting behavior and to further improve
and optimize the process, particularly in such experimentally
sophisticated situations. Various numerical methods have already
been used to simulate the described problem, such as Finite
Volume Method (FVM) [4-8], Finite Element Method (FEM) [9],
and more advanced meshless method, like the Local Radial Basis
Function Collocation Method (LRBFCM) [10-12].

There is a continuously developing need for benchmarking of
numerical models and methods - from the theoretical as well as from
the applied points of view. The benchmarking is usually done in two
parts. The verification part confirms the proper numerical solution
(Are we solving the equations correctly?) and the validation part (Are
we solving the right equations?) confirms the proper response of the
numerical model regarding the experimental evidence.

Only very recently, different computational models (different
governing equations, combined with different numerical methods)
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Fig. 1. Scheme of the continuous casting process.
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Fig. 2. Physical phenomena in the mold.

have been compared to assess the typical flow situations in contin-
uous casting process [13] and their relation to model experiments.
The solidification simulations are usually tested on a sequence of
benchmarks that follow NAFEMS-type heat conduction simulations
[14], convective diffusive cases with phase change [15], natural
convection cases [16], solid-liquid specific cases with freezing of pure

substance [17,18] and solidification of binary alloy [19,20]. However,
until now, there is a lack of benchmark tests that would enable
verification of numerical methods for solving transport phenomena in
continuous casting of steel in a systematic approach. There are no
systematic well documented benchmark tests currently existing even
for such a simple continuous casting models like the slice model
[21,22]. In this paper, a simple benchmark test for the numerical
solution of the continuous casting of steel, proposed in [1] has been
recalculated by LRBFCM and FVM. The main aim of the test is to
compare the results of different numerical methods of the same
physical model.

The original benchmark test [1] proposes a physical model that
considers turbulent fluid flow with electromagnetic forces, solidifica-
tion, and macrosegregation. In the present paper we consider only
turbulent fluid flow and solidification. The solution procedure is based
on explicit time discretization and fractional step method [23] for
velocity-pressure coupling. Turbulent flow is modelled by the two-
equation eddy-viscosity model with the low-Re corrections. The
meshless LRBFCM is used for the spatial discretization. The comparison
is made with the results obtained by the commercial software ANSYS
Fluent, which is based on the FVM. The objective of this exercise is to
test the ability of different numerical methods and algorithms to
reasonably agree on a solution and to produce a reference numerical
solution of the given problem for further comparisons.

2. Governing equations

Consider a connected domain £ with boundary I occupied by
a liquid-solid phase change material experiencing the solidification
phenomena and turbulence. The material is described with the
temperature dependent specific heat at constant pressure c,, of the
phase ¢ (g0 =S for solid phase and ¢ = L for liquid phase), thermal
conductivity 44, and the specific latent heat of the solid-liquid phase
change h;,. The density p is in the present simple model assumed to
be constant and equal for both phases, i.e. p = ps = p;. The liquid phase
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