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a b s t r a c t

The purpose of the present paper is to develop a Non-singular Method of Fundamental Solutions (NMFS) for
two-dimensional anisotropic linear elasticity problems. The NMFS is based on the classical Method of
Fundamental Solutions (MFS) with regularization of the singularities. This is achieved by replacing the
concentrated point sources with distributed sources over disks around the singularity, as recently developed
for isotropic elasticity problem. In case of the displacement boundary conditions, the values of distributed
sources are calculated by a simple numerical procedure, since the closed form solution is not available. In
case of traction boundary conditions, the respective desingularized values of the derivatives of the
fundamental solution in the coordinate directions, as required in the calculations, are calculated indirectly
by considering two reference solutions of the linearly varying simple displacement fields. The feasibility and
accuracy of the newly developed method are demonstrated through comparison with MFS solutions and
analytical solutions for a spectra of anisotropic plane strain elasticity problems, including bi-material
arrangements. NMFS turns out to give similar results as the MFS in all spectra of performed tests. The lack of
artificial boundary is particularly advantageous for using NMFS in multi-body problems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been a strong development of mesh
reduction methods in which polygon-like meshes are reduced or
avoided. The Method of Fundamental Solutions (MFS) (sometimes
also called the F-Trefftz method, the charge simulation method, or
the singularity method [1–3]) is a numerical technique that
belongs to the class of methods generally called boundary meth-
ods. The other well-known representative of these methods is the
boundary element method (BEM) [4,5]. Both methods are best
applicable in situations where a fundamental solution of the
partial differential equation in question is known. In such cases,
the dimensionality of the discretization is reduced. The BEM, for
example, requires polygonization of the boundary surfaces in
general three-dimensional (3D) cases, and boundary curves in
general 2D cases. This BEM approach requires the solution of
complicated regular, weakly singular, strongly singular, and hyper-
singular integrals over boundary segments which is usually quite
a cumbersome and a non-trivial task. The MFS [6] has certain

advantages over BEM that stem mostly from the fact that only the
pointization of the boundary is needed, which completely avoids
any integral evaluations, and makes no principal difference in
coding between the 2D and the 3D cases. On the other hand, when
a singular fundamental solution is involved, the MFS requires
nodes that are positioned on an artificial boundary located outside
the computational domain. The location of the artificial boundary
represents the most challenging problem of the MFS and has to be
dealed with heuristically [7]. The expansion coefficients of the
solution in MFS are determined so that the solution satisfies the
boundary condition with the help of direct collocation [6,7], least
squares approximation [8], or by an integral fit of the boundary
data [9,10]. Moreover, it has certain advantages over BEM, e.g. no
singularity and no boundary integrals are required. Both BEM and
MFS are ideal candidates for solving anisotropic linear elasticity
problems [11], since the fundamental solution for this type of
problems is known [12,13].

In recent years, various efforts have been made, aiming to
remove this drawback of the MFS, so that the source points can be
placed on the real boundary directly [14–16]. They introduce novel
ideas to determine the diagonal collocation matrix coefficients. In
[14–16], the diagonal coefficients were determined directly for
simple geometries or by using the results from the BEM, based on
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the fact that the MFS and the indirect boundary integral formula-
tion are similar in nature. In these approaches, information of the
neighboring points before and after each source point is needed, in
order to form line segments for integrating the kernels to obtain
the diagonal coefficients. This is essentially the same information
of the element connectivity as in BEM. In [17], a similarly modified
MFS is proposed, where the diagonal terms are determined by the
integration of the fundamental solution on the line segments
formed by using neighboring points, and the use of a constant
solution to determine the diagonal coefficients of the derivatives
of the fundamental solution in different coordinate directions. This
approach is very stable, but it amounts to solve the problem twice.
In [18], a similar method was developed for determining the
diagonal coefficients in the modified MFS by applying a known
solution inside the domain, so that the diagonal coefficients from
both the fundamental solution and its derivative can be deter-
mined indirectly, without using any element or integration con-
cept. Again, this approach is appealing, stable, and accurate but it
is costly for solving large-scale problems due to the need to solve
the problem twice. The solution also depends on the choice of the
reference points. In [19], a singular boundary method was applied
to two-dimensional (2D) elasticity problems, in which the authors
use an inverse interpolation technique to regularize the singularity
of the fundamental solution of the equation governing the
problem of interest. A regularized meshless method was also
developed for the non-homogeneous problems [20] in connection
with the dual reciprocity technique in the evaluation of the
particular solution. Liu [21] recently presented a new boundary
meshfree approach based on the modified MFS that has no
fictitious boundaries and singularities. In the new approach, the
concentrated point sources are replaced by area-distributed
sources covering the source points for 2D problems. These area-
distributed sources represent analytical integration of the original
singular fundamental solution, so that they preserve the advan-
tage of diagonal dominance for the system of equations, while
they have no troublesome singularity issues. Liu [21] gave the
method the name Boundary Distributed Source (BDS) method. In
[21], the author used the approach shown in [17] to determine the
diagonal coefficients of the derivatives of the fundamental solu-
tion. Liu's approach [21] has been recently used to solve porous
media problems with moving boundaries in [22]. A review paper
on non-singular MFS has been recently published by Gaspar [23].

The plane elasticity theory of isotropic materials has been well
established [24]. Both the stress and displacement formulations
have been successfully applied to solve various problems [25,26].
On the other hand, the theory of planar anisotropic elasticity,
which deals with the classical plan stress and plane strain
problems of anisotropic elastic materials possessing one plane of
symmetry at x3 ¼ 0 (i.e., monoclinic elastic materials), is still an
active research topic [27]. There are six independent elastic
constants in a problem of planar anisotropic elasticity, as opposed
to two in a problem of planar isotropic elasticity. Detailed discus-
sions and general formulas are provided in [28] for problems of
planar anisotropic elasticity. The MFS for anisotropic elasticity
problems was considered in [29,30]. Liu's approach [21] for Non-
singular MFS of isotropic elasticity problems, was proposed by Liu
and Šarler [31] recently. Its application to general anisotropic and
non-linear problems might not be as effective as to linear isotropic
problems. The main reason is that the anisotropy of a material
increases the number of material properties, and hence makes the
fundamental solutions either too complex or unavailable in a
closed form [32–34].

In the present paper, we use a Non-singular MFS (NMFS), based
on [19,29], to deal with the two dimensional (2D) anisotropic
elasticity problems. We respectively use the area-distributed
sources covering the source points to replace the concentrated

point sources. This NMFS approach also does not require a detailed
information about the neighboring points for each source point,
thus it is a truly meshfree boundary method. The derivatives of the
fundamental solution in the distributed source points are calcu-
lated by adopting the methodology in [17] from the Laplace to
anisotropic elasticity solution. The rest of the paper is structured
as follows. Solution procedure is elaborated for MFS and NMFS in a
uniform way. Numerical examples of different type of deforma-
tions with analytical solutions are presented to demonstrate the
feasibility and accuracy of the NMFS, followed by bi-material
examples. At the end, the conclusions and further research
directions are given.

2. Governing equation

We begin our discussion with three dimensional (3D) problems
and then reduce it to 2D problems of interest. Consider a 3D
domain Ω with the boundary Γ filled with anisotropic elasticity
materials. Let us introduce a 3D Cartesian coordinate system with
orthonormal base vectors ix; iy and iz and coordinates px; py and pz
of position vector p, i.e. p¼ pxixþpyiyþpziz . In order to simplify
the discussion, we shall assume (i) the solid is free of body forces,
and (ii) the thermal strains can be neglected. Under these condi-
tions the general equation of elasticity [35] is

Cςξυτ
∂2uυðpÞ
∂pς ∂pτ

¼ 0; ς; ξ; υ; τ¼ x; y; z; ð1Þ

where uυ are the displacements, and Cςξυτ are the components of a
fourth rank stiffness tensor [12]
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: ð2Þ

The stresses sςξ are related to the strains through generalized
Hooke's law

r¼ Cε; ð3Þ
where Cςξυτ satisfy the full symmetry conditions

Cςξυτ ¼ Cξςυτ; Cςξυτ ¼ Cςξτυ; Cςξυτ ¼ Cυτςξ: ð4Þ
ε is vector of strains
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¼

∂ux=∂px
∂uy=∂py
∂uz=∂pz
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∂ux=∂pzþ∂uz=∂px
∂ux=∂pyþ∂uy=∂px
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: ð5Þ

For plane strain problems, εzz ¼ εxz ¼ εyz ¼ 0. Under these con-
ditions, the equilibrium equations reduce to

c11
∂2ux

∂px2
þc66

∂2ux

∂py2
þ2c16

∂2ux

∂px ∂py
þc16

∂2uy
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∂2uy

∂py2
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