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a b s t r a c t

In this work, the combination of the time-domain boundary element method with other numerical
procedures is discussed, in order to analyze dynamic elastoplastic models. Since the computation of
stress components taking into account time-dependent fundamental solutions is quite elaborate and
computationally demanding, this work reviews this procedure considering combined methodologies to
evaluate the stress fields. In this context, coupled and hybrid formulations are discussed here. Taking
into account coupling procedures, standard, iterative and direct coupling techniques are presented,
being the time-domain boundary element method coupled with the domain boundary element method
and with the finite element method. For the hybrid formulation, some concepts of the finite element
method are introduced into the time-domain boundary element method, avoiding in this way most of its
inconveniences considering the dynamic analysis of inelastic models. At the end of the paper, numerical
examples are presented, illustrating the accuracy and potentialities of the discussed methodologies.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical simulation of arbitrarily shaped continuous bodies,
subjected to transient loads and non-linear constitutive relations,
remains, despite much effort and progress over the last decades, a
challenging area of research. In most cases, discrete techniques, such
as the finite element method (FEM) and the boundary element
method (BEM) have been employed and continuously developed
with respect to accuracy and efficiency.

There are three different formulations of dynamic elastoplastic
analysis using the BEM that are commonly used, namely: the domain
boundary element formulation (D-BEM); the dual reciprocity bound-
ary element formulation (DR-BEM); and the time-domain boundary
element formulation (TD-BEM). In the first two formulations, static
fundamental solutions are employed and domain integrals, related to
inertial and initial stress (or initial strain) terms, are considered.
Maintenance of the inertial domain integral generates the D-BEM,
whereas its transformation into a boundary integral by adopting
suitable approximations for acceleration components (dual recipro-
city technique) generates the DR-BEM. In both cases, once the
numerical system of equations is established considering the corre-
spondent spatial discretization, a time-marching scheme is intro-
duced (usually the Houbolt method [1]), allowing the advance of the
solution on time (temporal discretization). In the third formulation
(TD-BEM), time-dependent fundamental solutions are considered

and domain discretizations are restricted to regions where inelastic
terms are expected to occur. Although, in this case, the causality
property is well represented and accurate results are expected, the
TD-BEM is very demanding in computational terms, and overly
complex from a mathematical standpoint. For more details concern-
ing each BEM formulation described above, the reader is referred to
[2–6]; for a review of boundary element methodologies applied to
the solution of inelastic dynamic problems, the work of Beskos [7]
and Hatzigeorgiou and Beskos [8] may be referred.

In spite of its complexity, the TD-BEM is a very interesting
numerical tool, since it allows models with high stress concentra-
tion and/or with infinite physical extension to be analyzed in a
very consistent way. Most of the drawbacks of this formulation,
considering the analysis of inelastic problems, are related to the
stress state evaluation. As described by Carrer and Mansur [9], the
computation of stress components taking into account time-
dependent fundamental solutions is elaborate and arduous to
implement (however, alternative approaches have been presented,
which describe more feasible techniques [10]). In the present
work, these calculations are reviewed and stresses are computed
taking into account combined methodologies.

It did not take long until some researchers, seeking to avoid the
limitations of the TD-BEM and to profit from its advantages, started to
combine the TD-BEM with other numerical methodologies. Nowadays,
several publications on the topic are available and, in most of them,
BEM–FEM coupling procedures are discussed [11–16]. In these coupled
approaches, the FEM is usually employed tomodel sub-domains where
non-linear behavior is expected to occur and the TD-BEM is applied to
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model linear sub-domains or simply to act as a transmitting (or non-
reflecting) boundary. Recently, special attention has been devoted to
the formulation of more flexible coupling techniques, allowing inde-
pendent time and/or space discretizations to be considered [17–20].
The coupling of the TD-BEM with other boundary element methodol-
ogies has also been implemented, following similar guidelines [21,22].

In this work, three coupling formulations are discussed, namely the
standard, the iterative and the direct coupling formulation. In a
standard coupling approach, the algorithm for constructing unified
equations is highly complicated when compared with that for the FEM
or the BEM considered independently. In order to overcome this
inconvenience, iterative coupling approaches have been developed
[23–31]. In these coupling algorithms, each FEM and BEM sub-domains
are considered separately, and successive renewals of variables on the
interface of both sub-domains are preformed until the final conver-
gence is achieved. Presently, domain decomposition coupling appro-
aches applied to nonlinear models can be find in the literature, mostly
in static analyses. Elleithy et al. [23], for instance, extended the
sequential Neumann iterative coupling procedure to consider elasto-
plasticity and presented a brief review of previous iterative algorithms
which were applied to linear analyses: Gerstle et al. [24], Perera et al.
[25] and Kamiya and Iwase [26] utilized the conjugate gradient
method, the Schur complement and condensation to renew the
unknowns at interfaces; Kamiya et al. [27] employed the Schwarz
Neumann–Neumann and Schwarz Dirichlet–Neumann renewal sche-
mes; Lin et al. [28] and Feng and Owen [29] discussed a sequential
form of the Schwarz Dirichlet–Neumann method; Elleithy and
Al-Gahtani [30] presented an overlapping iterative domain decomposi-
tion method for coupling the FEM and BEM; etc. Recently, Soares et al.
[17,31] and Phansri et al. [32] employed an iterative coupling technique
to deal with non-linear dynamic models. Direct coupling procedures
(i.e., considering no iterative process) can also be applied to combine
the BEM and the FEM, still taking into account a domain decomposi-
tion context. This can be carried out by considering explicit time
marching techniques within the FEM sub-domain. This technique was
presented by Rizo and Wang [33] considering linear models and a
staggered solution approach, and by Soares et al. [18] and Romero et al.
[34] taking into account dynamic elastoplastic models and the Green–
Newmark time-marching technique [35–37]. Similar direct approaches
have been presented considering the central difference method [38].

Alternatively to coupling procedures, hybrid formulations can also
be developed. In hybrid formulations, one numerical method is
modified by the introduction of features related to another numerical
method. In this work, a hybrid BEM–FEM formulation is discussed,
where the tractions and the displacements of the model are evaluated
taking into account the TD-BEM, and the stresses of the model are
computed based on finite element procedures. This hybrid technique
avoids most of the TD-BEM inconveniences considering the dynamic
analysis of inelastic models [39].

The paper is organized as follows: in Section 2, the governing
equations for the dynamic elastoplastic model are presented, and, in
Section 3, the standard TD-BEM formulation is briefly discussed, as
well as some domain discretization techniques (namely the D-BEM
and the FEM); in Section 4, coupling techniques are described and,
in Section 5, the hybrid BEM–FEM formulation is discussed; at
the end of the paper (Section 6), two numerical applications are
considered, illustrating the accuracy and potentialities of the differ-
ent methodologies.

2. Governing equations

The basic equations related to the dynamic modeling of elasto-
plastic materials are given by:

σij;j�ρ €uiþbi ¼ 0 ð1Þ

dσij ¼Dep
ijkldεkl ð2Þ

dεij ¼ 1
2 ðdui;jþduj;iÞ ð3Þ

where Eq. (1) is the equilibrium equation and Eqs. (2) and (3) stand
for incremental relations. The Cauchy stress, using the usual indicial
notation for Cartesian axes, is represented by σij, and ui and bi stand
for displacement and body force distribution components, respec-
tively. Inferior commas and overdots indicate partial space and time
derivatives, respectively, and ρ stands for the mass density. Eq. (2) is
the constitutive law, written incrementally. The incremental strain
components dεij are defined in the usual way from the displace-
ments, as described by Eq. (3). In Eq. (2), Dep

ijkl is a tangential tensor
defined by suitable state variables and the direction of the incre-
ment. Within the context of associated isotropic work hardening
theory, the tangent constitutive tensor is defined as:

Dep
ijkl ¼Dijkl�ð1=γÞDijmnamnaopDopkl ð4Þ

where

Dijkl ¼ 2μν=ð1�2νÞδijδklþμðδikδjlþδilδjkÞ ð5aÞ

akl ¼ ∂σ=∂σkl ð5bÞ

γ ¼ aijDijklaklþH ð5cÞ

H¼ ∂σ0=∂εp ð5dÞ
In Eqs (5), σ and εp are the equivalent (or effective) stress and plastic
strain, respectively; σ0 is the uniaxial yield stress; H is the plastic-
hardening modulus (the current slope of the uniaxial plastic stress–
strain curve) and μ and ν stand for the shear modulus and the
Poisson ratio, respectively. Recall that in case of von Mises isotropic
strain-hardening material, the tensor of incremental elastoplastic
material moduli takes the form Dep

ijkl ¼Dijkl� ð3μ=ðσ2
0ð1þH=3ÞÞÞsijskl,

where sij ¼ σij�ð1=3Þδijσkk is the stress deviator; and for the case of
a perfectly plastic material H¼ 0. In case of elastic analyses, the
Cauchy stresses can be defined by σij ¼Dijklεkl, where Dijkl (see
Eq. (5a)) is the elastic constitutive tensor (this linear relation is a
particular case of Eq. (2)).

For the initial stress formulation, it is convenient to define a
fictitious “elastic” stress increment as follows:

dσe
ij ¼Dijkldεkl ð6Þ

and to rewrite Eq. (2) as indicated below

dσij ¼ dσe
ij�dσp

ij ð7Þ

where the initial stress increments are computed by

dσp
ij ¼ ð1=γÞDijmnamnakldσe

kl ð8Þ

In addition to Eqs. (1)–(8), boundary and initial conditions have to be
prescribed in order to completely define the problem. They are given
as follows:

(i) Boundary conditions (tZ0, XAΓ where Γ ¼Γu [ Γp):

ui ¼ ui for XAΓu ð9aÞ

pi ¼ σijnj ¼ pi for XAΓp ð9bÞ

(ii) Initial conditions (t¼0, XAΩ):

ui ¼ u0
i ð10aÞ

_ui ¼ _u
0
i ð10bÞ

where the prescribed values are indicated by over bars and pi
stands for traction components along the boundary whose unit
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