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a b s t r a c t

A truly meshless iterative coupling is presented to solve linear elastic fracture mechanic (LEFM)
problems. The global domain of the problem is decomposed into sub-domains, where each one is
addressed using an appropriate meshless method. The sub-domain which has embedded cracks is
modeled by the method of fundamental solutions (MFS) with the help of the numerical Greens function
(NGF) approach and the sub-domain without cracks is modeled by the meshless local Petrov–Galerkin
(MLPG) procedure. By using the NGF approach the representation of the crack is automatically included.
The specific computations of each meshless method are performed independently, coupled with an
iterative renewal of variables procedure, restricted to interface unknowns, to achieve the final
convergence. The iterative solution procedure presented yields good results as compared with the
boundary element method and analytical solutions for stress intensity factor computations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Meshless methods have been increasingly applied to obtain
solutions of partial differential equations as an alternative to mesh
type methods like the boundary element method (BEM) and the
finite element method (FEM). Previous references on the devel-
opment of alternative meshless methods can be found in the
works by Belytschko et al. [1], Golberg and Chen [2], Atluri [3], and
Nguyen et al. [4]. However like in any numerical approach,
meshless methods can present inherent drawbacks depending
on the engineering problem to be solved. To circumvent this,
coupling procedures using the appropriate meshless methods for
each typical problem region can be adopted, improving not only
efficiency, but also solution accuracy for different coupled engi-
neering problems as shown in the works [5–7].

The method of fundamental solutions (MFS), developed by
Kupradze and Aleksidze [8] is a simple meshless boundary-type
method. In order to build the solution, MFS uses a superposition of
fundamental solutions associated with the problem. This is done
without using any integrals, greatly simplifying its implementation.
This advantage actually exposes the drawback of the MFS, which is
the necessity of the location of the virtual sources to generate a
good solution. For linear elastic fracture mechanics (LEFM) pro-
blems a regularized version of the MFS-NGF was developed which

greatly facilitated the positioning of the virtual sources and to
obtain a stabilized solution for the system of linear equations,
improving the accuracy, as shown in the work [9]. Additionally by
using the NGF approach, the presence of cracks is already built-in in
the formulation. So the NGF procedure can be seen to be of great
value to meshless methods. The adopted NGF procedure was first
presented in the work by Telles et al. [10] and is used to compute
the fundamental solution for the MFS [9,12].

One class of the meshless methods that has been applied to a
large range of problems is the local Petrov–Galerkin (MLPG)
method presented in the work by Atluri and Zhu [13]. The MLPG
is a truly meshless method, not requiring any type of mesh
discretization like BEM, FEM or even meshless methods that use
cell representations to compute the integral [1,14]. However, this
flexibility in solving engineering problems can be computationally
expensive in some cases. By using the MLPG to solve LEFM
problems one needs to introduce several points near the crack
tips, what may lead to a computationally expensive procedure.

The purpose of the present paper is to use an efficient iterative
coupling procedure to solve LEFM problems. The problem domain
is divided in sub-domains. Here, the NGF procedure is adopted for
embedding a precise crack representation within the MFS idea
while for standard elastic regular sub-domains the MLPG is
adopted. This strategy permits to solve the principal problem in
a decoupled manner without the necessity to introduce several
near crack tip points to capture accurate stress intensity factors
(SIF), as in the standard MLPG approach for fracture mechanics
applications found in the works [5,15,16]. The adoption of MFS
with the NGF approach to selectively represent the cracks of the
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problem alleviates the computer time burden found in traditional
MLPG variations.

This text is organized as follows: first the governing equations
and the numerical Green's function for crack problems are intro-
duced; then we briefly present the MFS and the MLPG-1 method.
The MLPG-1 is a variation of the MLPG, that uses the MLS weight
function as test function in the local weak form [19]. The iterative
coupling procedure is detailed as well as the choice of the optimized
parameter is introduced. Finally two examples of problems solved
by using the iterative coupling between the MFS-NGF and the
MPLG-1 are shown to illustrate the degree of approximation found
for the SIF.

2. Governing equations

For a two-dimensional linear elastic body, Ω, bounded by the
boundary, Γ, the well-known Navier equation in terms of dis-
placements ui (generalized i directions displacements) can be
written in the form

G uj;kkþ
G
γ
uk;kjþbj ¼ 0: ð1Þ

where G is the shear modulus, ν is the Poisson's ratio, γ ¼ 1�2ν
and bj is the body force components. The displacement ui is solved
from the Eq. (1) satisfying the boundary conditions:

ui ¼ ui on Γu

pi ¼ σjinj ¼ pi on Γp ð2Þ

In the above equation, ui and pi are the prescribed displacements
and tractions on the boundary Γu and Γp, respectively. The
external boundary of the body is Γ ¼Γu [ Γp.

The Kelvin fundamental solutions for the second-order partial
differential equations (1) uK

ij ðξ; χ Þ and pKij ðξ; χ Þ are given by [17]

uK
ij ðξ; χ Þ ¼

�1
8πð1�νÞG ð3�4νÞ lnðrÞ δijþr;ir;j

� � ð3Þ

pKij ðξ; χ Þ ¼
�1

4πð1�νÞr γδijþ2r;ir;j
� �∂r

∂n
�γðr;inj�r;jniÞ

� �
ð4Þ

where δij is the Kronecker delta symbol, uK
ij ðξ; χ Þ and pKij ðξ; χ Þ

correspond to the Kelvin fundamental displacement and traction
in the j direction at the field point χ on the infinite elastic medium
subjected to a unit point load in i direction at the source point ξ.
Here r¼ rðξ; χ Þ represents the euclidean distance between the load
point ξ and the field point χ whose derivatives r;i are taken with
respect to the coordinates of χ . Eqs. (3) and (4) are valid for plane
strain. For plane stress ν is replaced by ν ¼ ν=ð1þνÞ.

Note that the LEFM problems are formulated based on the linear
elasticity theory above. But due to the presence of cracks in the
elastic medium, there will be surfaces sharing the same geometric
position, this creates problems in the implementation of numerical
methods. Difficulties like singularity of the system matrix or
degeneration of the boundary integral equation [10] are expected
to occur. So the MFS formulation needs special devices like the NGF
procedure, discussed in the next section, to accommodate this.

3. Numerical Green's function (NGF)

The fundamental solution used in this work is the numerical
Green's function [10,11]. The NGF is written in terms of a super-
position of the Kelvin fundamental solution and a complementary
part, which ensures that the final result is equivalent to an
embedded crack unloaded within the infinite elastic medium

subject to an unit applied load, given by

un

ijðξ; χ Þ ¼ uK
ij ðξ; χ ÞþuC

ijðξ; χ Þ ð5Þ

pn

ijðξ; χ Þ ¼ pKij ðξ; χ ÞþpCijðξ; χ Þ ð6Þ

where un

ijðξ; χ Þ and pn

ijðξ; χ Þ are the fundamental displacements and
tractions in j direction at the field point χ due to unit point load
applied at the source point ξ in i direction ,respectively. The
kernels uK

ij ðξ; χ Þ and pKij ðξ; χ Þ represent the known Kelvin's funda-
mental solution for the uncracked body already defined in
Eqs. (3) and (4). Here, uC

ijðξ; χ Þ and pCijðξ; χ Þ stand for complemen-
tary components of the problem defined as an infinite space
containing crack(s) of arbitrary geometry under applied distrib-
uted loads required to cancel the Kelvin's tractions as required in
the original fundamental problem.

The NGF procedure presents a suitable feature for mesh-free
methods, it introduces the existing crack surfaces without the
need to include additional boundary condition points there for the
problem representation. This is guaranteed by the traction-free
crack representation simulated by the addition of the comple-
mentary solutions uC

ijðξ; χ Þ and pCijðξ; χ Þ.
Analytical expressions for Eqs. (5) and (6) are limited to a few

particular 2-D geometries. A general alternative to obtain the
complementary solutions in a real variable numerical approach
can be found in [10]. Consider χ =2Γf and using the Somigliana's
identity, the complementary solutions can be defined in terms of
the following boundary integral equations:

uC
ijðξ; χ Þ ¼

Z
Γ �

pKjkðχ ; ζÞcikðξ; ζÞ dΓðζÞ ð7Þ

pCijðξ; χ Þ ¼
Z
Γ �

PK
jkðχ ; ζÞcikðξ; ζÞ dΓðζÞ ð8Þ

where cikðξ; ζÞ ¼ uC
ikðξ; ζ

þ Þ�uC
ikðξ; ζ

� Þ is the crack opening displa-
cements of the Green's function. Here, Γþ and Γ� stand for
superior and inferior surfaces of the crack Γf ¼Γþ [ Γ� with
ζAΓ� , respectively. Also PK

jkðχ ; ζÞ originates from the hyper-
singular formulation, the expression can be seen in [9].

The components PK
ij ðξ; χ Þ and pKij ðξ; χ Þ are known, hence the

crack opening displacements cikðξ; ζÞ need to be computed to
produce the complementary components of displacement and
traction (Eqs. (7) and (8)) and generate the fundamental numerical
Green's function defined in Eqs. (5) and (6). Eqs. (7) and (8) can be
solved numerically using a Gaussian quadrature [10]:

uC
ijðξ; χ Þ ¼ ∑

Npi

n ¼ 1
pKjkðχ ; ζnÞcikðξ; ζnÞjJjnWn ð9Þ

pCijðξ; χ Þ ¼ ∑
Npi

n ¼ 1
PK
jkðχ ; ζnÞcikðξ; ζnÞjJjnWn ð10Þ

where jJjn is the Jacobian of the transformation to the standard
quadrature interval, ζn andWn are the corresponding point over the
crack surface and weighting factor at the Gauss station n, respec-
tively and Npi is the number of integration points. Prescribing
traction boundary conditions pCijðξ; ζÞ ¼ �pKij ðξ; ζÞ along the crack
surface and evaluating the limit of Eq. (8) as χ↦Γ� , the following
hyper-singular boundary integral equation for unknowns cikðξ; ζÞ
can be written:

Γ �
PK
jkðζ ; ζÞcikðξ; ζÞ dΓðζÞ ¼ �pKij ðξ; ζ Þ ð11Þ

where the symbol indicates Hadamard's finite part integral

and ζ AΓ� . The point collocation technique is adopted to solve
Eq. (11); hence the following square system of equations, in matrix
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