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a b s t r a c t

In this paper, we derive an improved element-free Galerkin (IEFG) method for two-dimensional linear
elastodynamics by employing the improved moving least-squares (IMLS) approximation. In comparison
with the conventional moving least-squares (MLS) approximation function, the algebraic equation
system in IMLS approximation is well-conditioned. It can be solved without having to derive the inverse
matrix. Thus the IEFG method may result in a higher computing speed. In the IEFG method for two-
dimensional linear elastodynamics, we employed the Galerkin weak form to derive the discretized
system equations, and the Newmark time integration method for the time history analyses. In the
modeling process, the penalty method is used to impose the essential boundary conditions to obtain
the corresponding formulae of the IEFG method for two-dimensional elastodynamics. The numerical
studies illustrated that the IEFG method is efficient by comparing it with the analytical method and the
finite element method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Structures experience vibration under the action of dynamic forces,
which vary with time. In such cases, stress, strain, and displacement
are functions of time, and the principles and theories of dynamics
apply. These dynamic problems are typically described by linear or
nonlinear partial differential equations associated with boundary and
initial conditions; however, it is usually very difficult to obtain
analytical solutions for them. Therefore, for many decades, researchers
have devoted considerable effort to develop efficient numerical
methods to solve such problems. The finite element method (FEM)
and boundary element method (BEM) are presently the dominant
approaches for modeling transient dynamic problems [1]. They are
numerical methods based on meshes, and extremely large deforma-
tions of the mesh may encounter re-meshing.

Meshless methods constitute an interesting numerical technique
for solving many engineering problems that are not suited to conven-
tional numerical methods, with a minimum ofmeshing or nomeshing
at all [2]. Belytschko et al. used the element-free Galerkin (EFG)
method to solve dynamic fracture problems [3–6], and Liu et al. [7]
proposed the reproducing kernel particle method (RKPM) for struc-
tural dynamic analysis. The meshless local Petrov–Galerkin (MLPG)

method has been applied to solve two-dimensional linear elastody-
namics by Ching [8], and to analyze the free and forced vibration of
solids by Gu et al. [9]. Bueche et al. [10] applied the natural element
method (NEM) to solve two-dimensional linear elastodynamics pro-
blems, and Li and Cheng [11] presented a meshless manifold method
to analyze both transient elastodynamic deformations and dynamic
fractures. Cheng and Liew [12–14] used a direct meshless boundary
integral equation method, which coined the boundary element-free
method (BEFM), to solve two-dimensional linear elastodynamics. Chen
and Cheng presented a complex variable reproducing kernel particle
method for two-dimensional elastodynamics [15]. Cheng et al. pro-
posed a complex variable element-free Galerkin (CVEFG) method for
two-dimensional elastodynamics problems [16].

One of the major features of the EFG method is that the moving
least-square (MLS) approximation is employed to construct shape
functions. Based on the weighted orthogonal basis function, the
improved moving least-square (IMLS) approximation was adopted to
formulate different meshless methods, such as new implementation
of the EFG method [17] and the BEFM [14,15]. The MLS approxima-
tionwas developed from the conventional least-squares method, and
in practical numerical processes, it essentially involved the applica-
tion of the conventional method to every selected point. A dis-
advantage of the conventional least-squares method is that the final
system of algebraic equations is sometimes ill-conditioned. Hence,
in MLS approximation, the ill-conditioned system of algebraic
equations must be solved. However, we are unable to locate which
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algebraic equation system is ill-conditioned. In mathematical
theories, there are no methods for judging whether an algebraic
equation system is ill-conditioned or not before the equation is
solved. Thus we sometimes cannot obtain a good solution or even
a correct numerical solution. Using the weighted orthogonal basis
function, the IMLS approximation may overcome this disadvantage
of the MLS approximation. The algebraic equations system in the
IMLS approximation is well-conditioned, and it can be solved with-
out deriving the inverse matrix [14,15]. This is because there are
fewer coefficients in the IMLS than in the MLS approximation. In the
IEFG method that is formed with the IMLS approximation, fewer
nodes are selected in the entire domain than those are selected in
the conventional EFG method. Thus the IEFG method should result
in a higher computing speed [18–20].

In this paper, based on the IMLS approximation, an improved
element-free Galerkin (IEFG) method for two-dimensional linear
elastodynamics is proposed. In the IEFG technique, the Galerkin weak
form is employed to obtain the discretized system equations, and the
Newmark time integration method is used for the time history
analyses. In the solution process, the penalty method is employed to
impose the essential boundary conditions so as to obtain the corre-
sponding formulae of the IEFG method for 2D elastodynamics.

2. Improved moving least-square approximation

In the EFG method, MLS approximation is employed to construct
the shape function. A useful property of this approximation is that its
continuity is equal to the continuity of the weight function, and thus
highly continuous approximations can be generated when the
appropriate weight function is chosen. This means that the post-
processing to generate smooth stress fields, which is mandatory for
C0 finite element methods, is unnecessary [21,22].

In the IMLS approximation, the trial function is

uhðxÞ ¼ ∑
m

i ¼ 1
piðxÞaiðxÞ ¼ pTðxÞaðxÞ; ð1Þ

where piðxÞ; i¼ 1;2;…;m, are monomial basis functions, m is the
number of terms in the basis, and aiðxÞ are the coefficients of the basis
functions.

The local approximation, as described by Lancaster and Sal-
kauskas [23], is

uhðx;xÞ ¼ ∑
m

i ¼ 1
piðxÞaiðxÞ ¼ pTðxÞaðxÞ: ð2Þ

For obtaining the local approximation of the function uðxÞ, the differ-
ence between it and the local approximation uhðxÞmust be minimized
by a weighted least-squares method.

Define a function

J ¼ ∑
n

I ¼ 1
wðx�xIÞ½uhðx; xIÞ�uðxIÞ�2

¼ ∑
n

I ¼ 1
wðx�xIÞ ∑

m

i ¼ 1
piðxIÞUaiðxÞ�uðxIÞ

" #2
; ð3Þ

where wðx�xIÞ is a weight function with a domain of influence,
and xI ðI ¼ 1;2;…;nÞ are the nodes with domains of influence that
cover the point x.

Eq. (3) can be written as

J ¼ ðPa�uÞTWðxÞðPa�uÞ; ð4Þ

where

uT ¼ ðu1;u2;…;unÞ; ð5Þ

P ¼

p1ðx1Þ p2ðx1Þ ⋯ pmðx1Þ
p1ðx2Þ p2ðx2Þ ⋯ pmðx2Þ

⋮ ⋮ ⋱ ⋮
p1ðxnÞ p2ðxnÞ ⋯ pmðxnÞ

2
66664

3
77775 ð6Þ

and

WðxÞ ¼

wðx�x1Þ 0 ⋯ 0
0 wðx�x2Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ wðx�xnÞ

2
66664

3
77775: ð7Þ

The minimization condition requires that

∂J
∂a

¼ 0; ð8Þ

which results in the equation system:

AðxÞaðxÞ ¼ BðxÞu; ð9Þ

where matrices AðxÞ and BðxÞ are

AðxÞ ¼ PTWðxÞP ð10Þ

and

BðxÞ ¼ PTWðxÞ: ð11Þ

In the MLS approximation, Eq. (9) is sometimes ill-conditioned,
even in the presence of a singular phenomenon. In addition, it is
difficult to obtain the correct numerical solution. Using the weighted
orthogonal basis functions, the IMLS approximation was presented
[24,25].

For 8 f ðxÞ, gðxÞAspanðpÞ, define

ðf ; gÞ ¼ ∑
n

I ¼ 1
wðx�xIÞf ðxIÞgðxIÞ; ð12Þ

and then ðf ; gÞ is an inner product, and span ðpÞ is a Hilbert space.
In the Hilbert space span ðpÞ, for the set of points fxig and the

weight functions fwig, if the functions p1ðxÞ; p2ðxÞ;…;pmðxÞ satisfy
the conditions

ðpk; pjÞ ¼ ∑
n

i ¼ 1
wipkðxiÞpjðxiÞ ¼

0; ka j

Ak; k¼ j

(
ðk; j¼ 1;2;…;mÞ; ð13Þ

then the function set p1ðxÞ; p2ðxÞ;…; pmðxÞ is called a weighted
orthogonal function set with a weight function fwig about points
fxig. If p1ðxÞ; p2ðxÞ;…; pmðxÞ are polynomials, the function set p1ðxÞ;
p2ðxÞ;…; pmðxÞ is called a weighted orthogonal polynomial set with
the weight function fwig about points fxig.

From Eqs. (12) and (9) can be written as

ðp1; p1Þ ðp1; p2Þ ⋯ ðp1; pmÞ
ðp1; p1Þ ðp2; p2Þ ⋯ ðp2; pmÞ

⋮ ⋮ ⋱ ⋮
ðp1; p1Þ ðpm;p2Þ ⋯ ðpm; pmÞ

2
66664

3
77775

a1ðxÞ
a2ðxÞ
⋮

amðxÞ

2
66664

3
77775¼

ðp1;uIÞ
ðp2;uIÞ

⋮
ðpm;uIÞ

2
66664

3
77775: ð14Þ

When the basis function set piðxÞAspanðxÞ, i¼ 1;2;…;m, is used as
the basis function, Eq. (14) becomes

ðp1; p1Þ 0 ⋯ 0
0 ðp2; p2Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ðpm; pmÞ

2
66664

3
77775

a1ðxÞ
a2ðxÞ
⋮

amðxÞ

2
66664

3
77775¼

ðp1;uIÞ
ðp2;uIÞ

⋮
ðpm;uIÞ

2
66664

3
77775 ð15Þ

and

aðxÞ ¼ AðxÞBðxÞu; ð16Þ
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