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a b s t r a c t

Local radial basis functions (RBFs) are becoming increasingly popular as an alternative to global RBFs,
as the latter suffer from ill-conditioning. In this paper, a local meshless method based on RBFs in a finite-
difference (FD) mode with better conditioned matrices has been developed for solving an eigenvalue
problem with a periodic domain. Through numerical experiments, we examine the accuracy of the
method as a result of variation in the number and layout of nodes in the domain and the effects of shape
parameter, using various globally supported RBFs. The presented scheme has been validated on two
different types of nodal arrangement, namely uniform and non-uniform node distributions. The results
obtained from the method are found to be in good agreement with the benchmark analytical solutions.
In addition, a higher-order RBF-FD scheme (which uses ideas from Hermite interpolation) is then pro-
posed for solving the eigenvalue problem with a periodic domain. Tests show that both accuracy and
convergence order can be improved dramatically by using higher-order RBF-FD formulae, which
converge at a rate of Oðh8:5Þ compared to the standard-order method which converges as Oðh4:3Þ for
uniformly distributed nodes with spacing h.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There are many engineering problems which give rise to a set of
partial differential equations (PDEs) along with some boundary
conditions when modelled mathematically. These problems were
traditionally solved using various mesh-based methods, including
the finite element method (FEM), finite difference method (FDM)
and finite volume method (FVM). These methods are popular and
well-established, but suffer certain drawbacks due to their reliance
on a mesh of elements connected in a predefined way. Generating
the mesh can be computationally expensive, and sometimes it is
necessary to re-mesh to achieve sufficient accuracy. There are also
some problems, such as those involving large deformations, crack
growth etc., which the mesh based methods cannot model well. Due
in part to these limitations, there is growing interest in meshless
methods for solving PDEs in engineering applications [1,2].

Meshless methods have a history traceable back to early colloca-
tion methods published in the 1930s for the purpose of computing
excited electronic energy bands in metals [3,4]. A number of meshless
methods have been introduced to date. Some of the well-known
meshless methods are smooth particle hydrodynamics (SPH) method

[5], diffuse approximate and diffuse element methods (DEMs) [6],
element free Galerkin (EFG) method [7], reproducing kernel particle
method (RKPM) [8], partition of unity method (PUM) [9], finite point
method (FPM) [10], meshless local Petrov–Galerkin method (MLPG)
[11], and meshfree weak-strong formmethods [12,13]. In recent years,
another group of meshless methods which are based on so-called
RBFs have become attractive for solving PDEs (e.g., [14–18]). One of the
main advantages of using meshless methods is that it is computa-
tionally easy to add or remove nodes from a pre-existing set of nodes,
which is not the case for mesh-based methods, where the addition or
removal of a point/element would lead to heavy remeshing, requiring
significant computational resources.

The most commonly used globally supported RBFs (GSRBFs) in
the literature for solving PDEs are multiquadrics (MQ), inverse
multiquadrics (IMQ), polyharmonic splines (PS) and Gaussians
[19]. MQ, IMQ and Gaussian RBFs include a shape parameter, whose
numerical value can be varied to control the domain of influence of
the basis function (for example, in the case of the Gaussian RBF,
increasing the value of the shape parameter leads to flatter basis
functions). However, these global RBFs produce dense matrices,
which tend to become poorly conditioned as the number of collo-
cation points increases. Their accuracy and efficiency has recently
been shown to be poor for solving 3D parabolic PDEs in cases where
the number of nodes is large [20], whereas local methods were
found to be more efficient and accurate but displayed greater
sensitivity to node position distributions and the choice of shape
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parameter. There are currently several ways to overcome the
disadvantages of using GSRBFs for solving PDEs, such as domain
decomposition, preconditioning, fine tuning the shape parameters
of MQs [14,21], and using compactly supported RBFs (CSRBFs)
[22–24,17,18].

In 2003, Lee, Liu and Fan introduced a new truly meshless
approximation strategy for solving PDEs, based on the local
multiquadric and local inverse multiquadric approximations [25].
Their approximation function is constructed without requiring any
geometric data other than the local configuration of nodes falling
inside its influence domain. Šarler and Vertnik also formulated a
local version of the classic RBF collocation method suitable for
solving diffusion problems [26]. Among the recently proposed
methods is the local RBF-FD. This method was found to give up
spectral accuracy for a sparse, better-conditioned linear system
and provide more flexibility for handling non-linearities when
used to solve elliptic problems [27]. The sparseness and improved
conditioning of the system matrices in the local RBF-FD method
makes for quicker, more efficient computation than the full
matrices used in the GSRBF method. The idea of using RBFs in a
finite difference mode (RBF-FD) (which may be seen as a general-
isation of the classical finite difference method to scattered node
layouts) was introduced independently by Tolstykh and Shirobo-
kov [28], and Wright and Fornberg [27], in the literature. Bayona
et al. [29] have analytically studied the convergence behaviour of
the local RBF method (using multiquadrics) as a function of shape
parameter, number of nodes employed, and the nodal distance,
finding an optimal shape parameter which is independent of nodal
distance.

In this paper, the local RBF-FD is extended for solving an
eigenvalue problem on a periodic domain. The method uses RBFs
with global support, but uses the radial basis function in a finite
difference mode, applying the RBFs inside a local support domain
for each node, similarly to how finite difference schemes achieve
sparsity. This reduces the number of so-called connections for each
node, hence producing sparser and better-conditioned matrices
than the global RBF methods, which produce increasingly ill-
conditioned matrices as the number of nodes increases. The paper
goes on to illustrate a higher-order RBF-FD formulation which
employs ideas from Hermite interpolation to achieve better
accuracy for a given size of support domain. In this work,
numerical results are presented for several RBFs using regular
and irregular node layouts, and compared to the analytical solu-
tions of the problem.

The paper is structured as follows: Section 2 introduces radial
basis function interpolation, Section 3 presents the formulation of
the RBF-FD scheme and the higher-order RBF-FD scheme, and
Section 4 gives the analytical solutions to our sample problem.
In Section 5 we give the results of some computational experi-
ments, and conclusions are drawn in Section 6.

2. Radial basis functions

For given data fxi; f igARn � R, 1r irN specifying values of a
function f : Rn-R on a finite set of distinct centres fxigNi ¼ 1ARn,
the approximation FðxÞ to a function f ðxÞ can be written as

FðxÞ ¼ ∑
N

j ¼ 1
γjϕðJx�xj J Þþβ; ð1Þ

where x and xj are points in Rn, the RBF is ϕ, the Euclidean norm
on n-dimensional space is indicated by J � J , and N is the total
number of points. The coefficients γj and β may be found by
setting

FðxiÞ ¼ f ðxiÞ; for i¼ 1;…;N: ð2Þ

and imposing that ∑N
j ¼ 1γj ¼ 0. We have augmented the interpola-

tion with the constant β so that the interpolation is exact for
constant functions, and this gives rise to a symmetric linear
system of equations,

Φ e
eT 0

" #
γ
β

" #
¼ u

0

� �
; ð3Þ

with Φi;j ¼ϕðJxi�xj J Þ for i; j¼ 1;…;N, and ei ¼ 1 for i¼1,…,N.
A low-degree augmenting polynomial (e.g., of first degree) could
instead have been chosen, and would ensure the exactness of the
interpolation for linear and constant functions. However, this
would lead to a non-linear system of equations for determining
β and the n coefficients fγigni ¼ 1 of the polynomial of degree n,
which would be computationally expensive.

In Table 1 we present some of the popular globally supported
RBFs found in the literature. Note that c is a shape parameter
which can take arbitrary values [30, p. 142]. In the case of the
polyharmonic spline, m is a parameter taking positive integer
values.

3. Meshless method formulation

We formulate our meshless method for the elliptic Helmholtz
eigenvalue problem, which arises in many physical applications,
in particular acoustic and electromagnetic waves [31]:

∇2uþλ2u¼ 0; ð4Þ
where ∇2 is the Laplace operator. The problem is to find λ for
which there exist non-null functions u (defined on n-dimen-
sional Euclidean space Rn) satisfying (4) and the given boundary
conditions.

In physical applications, we usually have n¼1, 2 or 3. Here, we
solve (4) in two dimensions, where it takes the form

∂2u
∂x2

þ∂2u
∂y2

þλ2u¼ 0; ð5Þ

for a problem with periodic boundary conditions as illustrated
in Fig. 1.

We make the boundary conditions periodic by requiring that

uðx;0Þ ¼ uðx; bÞ;
and

uð0; yÞ ¼ uða; yÞ;
where a and b are the lengths of the domain edges (see Fig. 1).
Where so-called minimum image distances r are required between
nodes, these are calculated as

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

x þΔ2
y

q
; ð6Þ

where the x�component of the distance between the points at ðxi; yiÞ
and (x,y) is Δx and the y�component is Δy, which are given by

Δx ¼minðJx�xi J ; a�Jx�xi J Þ;

Table 1
Some commonly used globally supported RBFs.

Multiquadric

ϕ¼ ðc2þr2Þ1=2
Inverse multiquadric

ϕ¼ ðc2þr2Þ�1=2

Polyharmonic spline
ϕ¼ r2m log ðrÞ
Gaussian
ϕ¼ expð�r2=cÞ
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