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a b s t r a c t

The so-called enriched weight functions (EWFs) are utilized in mesh-free methods (MMs) to solve linear
elastic fracture mechanics (LEFM) problems; the following issues are of concern: convergence behavior;
sufficiency of EWFs to capture singular fields around the crack-tip; and the preservation of the J-integral
path-independency. EWFs prove useful in conjunction with the moving least square reproducing kernel
method (MLSRKM); for this purpose, both EWFs and MLSRKM are modified. Since EWFs are not truly
representative of the near-tip solution, fully EWFs (FEWFs) are introduced. Finally, some descriptive
examples address the aforementioned concerns and the accuracy and efficacy of the proposed technique.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mesh-free methods (MMs) have shown a great success in
solving boundary value problems for various fields of computa-
tional mechanics. These methods were first introduced as smooth
particle hydrodynamics (SPH) by Lucy [1] and Gingold and Mono-
ghan [2] to solve problems in astrophysics. Then, SPH was applied
to solid mechanics for the first time by Libersky et al. [3]. However,
it was observed that SPH had some deficiencies such as tensile
instability and incapability to preserve reproducing (completeness
or consistency) conditions, specifically along boundaries [4]. After-
wards, Belytschko et al. [5] applied the moving least square
method (MLSM), which was introduced by Lancaster and Salkaus-
kas [6], as the first mesh-free Galerkin method to solve governing
partial differential equations for solids in a global weak form and
called it the element-free Galerkin method (EFGM). One year later,
Liu et al. [7,8] alleviated the tensile instability and consistency
shortcomings in the relations associated with SPH via introducing
a correction term into this method and called it the reproducing

kernel particle method (RKPM) that is founded on the wavelet
theory [9]. More recently, some kinds of higher order reproducing
forms of this method, such as the gradient reproducing kernel
particle method (GRKPM) [10–13], have been developed. Although
RKPM is very similar to EFGM in formula, they have different
origins. Owing to this fact, Liu et al. [14] presented the moving
least square reproducing kernel method (MLSRKM) unifying RKPM
and EFGM, as two special discretized cases, under one umbrella.
One of the generalized approaches to MLSRKM has been lately
presented in [15]. MLSRKM is adopted here due to its stability in
preserving the consistency conditions for a discretized domain due
to the shifted and scaled basis usage in comparison with MLSM
[16]. Furthermore, it has been observed that variable volumes of
particles or quadrature weights in MLSRK approach are more
accurate than the uniform weights used in MLSM, especially along
boundaries [17]. References [4,17–22] provide further information
about various types of MMs and their properties.

MMs can simply provide smooth and global approximations to
the desired order such that they are introduced as more eligible
candidates to satisfy equilibrium equations in a weak form [18]
and yield continuous stress field throughout the entire domain
without any post-processing compared to the Finite Element
Method (FEM). In addition, MMs enjoy flexibility in handling
mesh sensitive problems [17,20]. As their name implies, MMs
are free from mesh, and presumed connectivity for a discret-
ized domain is not required anymore. Thereupon, they can be
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considered instrumental in modeling discontinuities like propa-
gating cracks; because, contrary to FEM, there is no need for a
burdensome task of remeshing due to the simulation of the crack
growth. Another beneficial property of MMs, which is the main
topic of this paper, is capability of including a prior knowledge of a
local solution, such as singular field around the crack-tip in linear
elastic fracture mechanics (LEFM) problems, known as enrichment
techniques.

The enrichment techniques are categorized as two main groups
in computational approaches. The first one consists of extrinsic
enrichment techniques basically resulting in the increase in the
number of unknowns and consequently high computational cost
of solution due to a broader band-width in the stiffness matrix
[21]. The possible ill-conditioning in the linear system of equations
could be another problem of the extrinsic enrichments [23]. The
problems associated with these enrichments can be heightened in
3D cases. As an example of the extrinsic enrichment techniques,
the extended element-free Galerkin method (XEFG) first proposed
in the context of LEFM [24] can be mentioned. Later, this approach
was developed to deal with problems involving nonlinear materi-
als and cohesive cracks [25–28]. However, due to the heavily
overlapping shape functions in the presented methods [25–28],
crack closure at the crack-tip should be enforced through a tip
enrichment technique. Therefore, some alternative methods were
suggested [29–31]; though, these approaches turn out to be
complicated for the analysis of situations where the crack front
is curved in three dimensions [32]. In addition, the accuracy of the
methods [25–31] has not been clearly shown through the exam-
ination of the fracture parameters [32]. Although the aforemen-
tioned mesh-free methods which take advantage of extrinsic
enrichments require the crack path continuity; in the cracking
particles method [26,27,33,34] there is no need to have continuous
crack path. Consequently, this method is practical for 3D problems
including complex crack patterns; however, using it may lead to
spurious crack patterns [35,36].

The second group comprises intrinsic enrichment techniques
where generally no additional unknowns are introduced to the
approximation. This feature makes these techniques look more
appealing. However, the well-known intrinsic enrichment in MMs
called fully enriched basis [37,38] leads to a heavy computational
cost caused by inverting a 7�7 matrix at each calculation point in
order to compute shape functions and their associated derivatives.
Calculating the stiffness matrix with a broader band-width is
another consequence of employing the fully enriched basis tech-
nique. Nevertheless, this technique is not applicable to MLSRKM,
in view of the fact that this method can just reproduce polynomial
basis exactly in a global sense [14,17]. Another intrinsic enrich-
ment technique, which in essence is applicable to all kernel-based
methods and we deal with in the present work, is using the
enriched weight functions (EWFs) introduced by Duflot and
Nguyen-Dang [39]. They proposed some criteria based upon which
three EWFs are constructed and then added to the crack-tip. They
have shown that results are improved compared to an ordinary
approximation. However, there are some concerns about EWFs
described as follows. No displacement and stress analyses around
the crack-tip were performed to demonstrate that these three
EWFs are sufficient to represent the near-tip displacement field
and capture the singularity of the stress field in the vicinity of the
crack-tip. More importantly, there was no numerical experiment
to show the effect of EWFs on the convergence behavior of a
mesh-free Galerkin method if they are used in a mesh-free
approximation space. Furthermore, by assuming post-processing
routine of evaluating J-integral [40], there were no results showing
the prominent path-independency property of stress intensity
factors (SIFs) stemming from the J-integral values when EWFs
are employed. As a matter of fact, this property plays an important

role in crack propagation problems in order to predict the crack
growth path more accurately. Here, it is shown that EWFs are not
truly representative of the known solution around the crack-tip.
Hence, we introduce the fully enriched weight functions (FEWFs)
technique. Also, it is discussed that by introducing EWFs into
MLSRKM, some modifications related to EWFs and MLSRKM are
required. For demonstration, we focus on analyzing some 2D
problems to show the efficiency and accuracy of the proposed
technique as well as addressing the above-mentioned issues. It
should also be noted that the enriching or modifying weight
functions approach has been recently used to introduce disconti-
nuity into the mesh-free approximation [41]. The resulting
method allows a more straightforward simulation of multiple
cracks, crack branching, and crack propagation without using any
of the existing discontinuity criteria, such as visibility and diffrac-
tion methods and without introducing any additional unknowns
and equations, as in extrinsic partition of unity-based methods.
Therefore, the proposed technique in this paper together with the
method in [41] can be considered as a powerful tool to solve the
LEFM problems, even in 3D cases. Extension of this approach to
analyze nonlinear fracture mechanics problems such as the
Hutchinson–Rice–Rosengren (HRR) singular field model [42,43]
is the subject of a future work.

The current paper is presented as follows: In Section 2, MLSRK
approximation and the associated shape functions are derived. In
Section 3, MLSRK approximation is introduced into the weak form,
obtained from the Galerkin method, to achieve its discrete version,
and some notifications on imposing essential boundary conditions
(EBCs), numerical integration and the choice of the elements of
MLSRK shape functions are given. In Section 4, it is discussed how to
model a discontinuity in MMs. In Section 5, a brief overview on the
enrichment techniques and their associated features is presented. In
Section 6, FEWFs technique is introduced. How to extract SIFs is
described in Section 7. Some numerical examples are presented in
Section 8 to depict the performance of the proposed technique.
Eventually, conclusions are drawn in Section 9.

2. Moving least square reproducing kernel approximation

The procedure of deriving shape functions or approximants
associated with MLSRKM actually lies in its name. In fact, this
procedure consists of two crucial steps: first, constructing a kernel
function equipped to the least square technique and giving a
reproduction or projection of a function, and second, using the
moving process to achieve a global approximation throughout the
domain without any need for meshing. As discussed in [14,15], the
moving least square reproducing kernel integral takes the follow-
ing form:

ℛm
ϱ uðxÞ ≔

Z
Ωy

uðyÞKϱðy�x; xÞdΩy ð1Þ

In relation (1), ℛm
ϱ is the reproducing operator giving the repro-

duction or projection of uðxÞ – a sufficiently smooth function
defined on a simply connected open set ΩAℝn – by the resolution
ϱ with the highest polynomial order m which is employed to
generate the polynomial vector PðxÞ. PðxÞ is a complete m-order,
l-component polynomial vector with P1ðxÞ ¼ 1. ϱ is the dilation
parameter vector [14]; and, Kϱðy�x; xÞ is defined by

Kϱðy�x; xÞ ≔Cðϱ; y�x; xÞΦϱðy�xÞ; ð2Þ
which represents the moving least square reproducing kernel
formula. In (2), Φ is a weight function defined by

Φϱðy�xÞ≔Cn

ϱn
Φ

y�x
ϱ

� � 40; x AsuppfΦϱðy�xÞg;
¼ 0; otherwise;

(
ð3Þ
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