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a b s t r a c t

A cover refinement method is proposed for the numerical manifold method (NMM) to simulate crack
propagation in brittle materials. New mathematical covers are defined for manifold elements near a
crack tip. The refinement is done for corresponding mathematical covers of the selected manifold
elements. The updating process of mathematical cover with respect to different boundary conditions is
introduced in detail. When a mathematical cover is updated, the corresponding physical covers and
manifold elements are updated accordingly. Furthermore, the loops of the considered domain are
updated as well. Three numerical examples are analyzed to validate the proposed cover refinement
method. The numerical results are all in good agreement with those results in the existing studies. It is
demonstrated that the proposed cover refinement method has higher accuracy for crack propagation
simulation comparing to the traditional numerical manifold method which has a consistent mathema-
tical cover system. The proposed cover refinement method also does not significantly change the
manifold elements at the vicinity of the crack tips. A rock slope model with a bilinear failure mode is
simulated and progressive failure process of the rock slope is obtained, which demonstrates the
applicability of the proposed method in practical rock engineering.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Natural geological and engineering materials such as rock and
concrete contain various inherent voids and cracks. When the
external load exceeds a certain level, the existing cracks evolve in
the material, and finally coalesce with each other. There are many
challenges when numerical methods are used to simulate crack
propagations in materials. Amongst, the simulation of moving crack
tips is critical to derive a correct failure pattern and it has attracted
great attention of researchers in the past decades. Various numer-
ical techniques have been put forward to overcome the singularity
of the stress field at the crack tip and great successes have been
achieved.

The earlier studies focused on the local remeshing around a
propagating crack tip, such as the automatic remeshing scheme
[1,2], the new hybrid algorithm [3] and the moving mesh technique
[4]. The minimal remeshing finite element method [5] was pre-
sented for crack growth with discontinuous enriched functions. The
remeshing was needed only for severely curved cracks and places
away from the crack tip. To deal with multiple boundaries and
multiple materials, a solution based on an advanced remeshing and

nodal relaxation technique [6] was proposed, and then three
different crack growth criteria and the respective crack paths
prediction for several test cases were compared [7]. A general study
of the stability of variable-mesh dynamic calculations using an
energy approach with remeshing was presented to establish the
conditions which were necessary to ensure stability and allow
control of energy transfers during the evolution of the mesh [8].

Other mesh refinement methods and subdomain or sub-
structed methods have also achieved accurate results in crack
propagation simulations. The effect of using collapsed quarter-
point elements in conjunction with the adaptive refinement
procedure in solving crack problems was investigated [9] and it
was found that the efficiency of the adaptive procedure could be
increased considerably. Furthermore, an automated adaptive
remeshing procedure was presented [10] to simulate arbitrary
shape crack growth in a 2D finite element mesh. Some schemes
that split the domain into several subdomains or using radial basis
functions to fracture problems were further investigated [11,12].

Recently, new numerical methods, such as the extended element
method (XFEM) [13] and the numerical manifold method (NMM)
[14], combined with the level set technique [15–17] and enriched
function technique [13,18] achieved great success. An algorithm
which couples the level set method with the extended finite
element method to model crack growth was described [17]. In
addition, a standard displacement-based enriched approximation
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method [19] was presented from the interaction of the crack
geometry with the mesh. This technique allows the entire crack
to be represented independently of the mesh, and so remeshing is
avoided. The higher-order XFEM [20,21] was also used to modify
the enriched element basis with the asymptotic crack tip displace-
ment solutions as well as with the Heaviside function to improve
the rate of convergence and enable the accurate approximation of
solutions with jumps or kinks within elements. Furthermore, a new
method [22] was presented for treating arbitrary discontinuities
without additional unknowns, by an approximation space consist-
ing of mesh-based, enriched moving least-squares functions near
discontinuities and standard FE shape functions. Some important
parameters controlling the accuracy of crack tip fields using the
XFEM and statically admissible stress recovery, such as the order of
quadrature, the number of retained terms in the crack tip asymp-
totic field, the number of enriched layers and use of arbitrary
branch functions, a proper choice of the sampling points in the
enriched element and the size of the domain of influence of moving
least squares, were also investigated [23]. The singular enrichment
surface with a cutoff function and the optimality of the coupling
between the singular and the discontinuous enrichments were
done in [24]. Nakasumi et al. [25] presented a method combined
with mesh superposition technique and the XFEM to crack propa-
gation analysis for large scale or complicated geometry structures.
Some new Gaussian integration schemes for discontinuities and
crack singularities in the XFEM [26] and some application in
composite structures [18] as well as the enrichment of the XFEM
by meshfree approximations [27] have also been studied. The
detailed information can be found in the review paper [13,28].
In the meanwhile, crack propagation simulations with the NMM
and Discontinuous Deformation Analysis (DDA) [29–33] have been
described and the comparisons between the NMM and XFEM in
crack propagation simulations have also been carried out. Similar to
the XFEM, the NMM is able to simulate both continuum and
discontinuum in a unified manner. It has the advantage to simulate
heavily fractured solids using a regular or irregular cover system
and it has been widely applied to simulate blocky rock mass
deformation and stability under different static and dynamics loads.
Different from the FEM and its extended versions which approx-
imate the displacement field in a finite element using the node
displacements, the NMM calculates the displacement fields in a
manifold element using quantities at associated physical covers.
Detail introduction of the NMM can be found in [14,30]. The mesh
refinement of NMM predicting the crack propagation has ever been

discussed by Tsay et al. [34] and Chiou et al. [35]. However, the
introduction of the method, without considering the important
points of refinement in the NMM, was not explained clearly and the
examples illustrated mainly focused on problems with tensile
loading.

In the present paper, a cover refinement method is proposed
for the NMM to simulate crack propagation. New mathematical
covers are defined for manifold elements near a crack tip. Not all
frontal manifold elements at the vicinity of a crack tip but only
those selected manifold elements satisfying certain conditions
need to be refined. It is demonstrated that the cover refinement
method has higher accuracy for crack propagation simulation
comparing to the traditional numerical manifold method which
has a consistent mathematical cover system throughout the
simulation process. A few examples are used to validate the
proposed cover refinement method. A rock slope model with a
bilinear failure mode is simulated and a progressive failure of the
slope is obtained, which demonstrated the applicability of the
proposed method in practical rock engineering.

2. Fundamentals of the NMM

The NMM is based on three basic concepts, i.e. the mathematical
cover, the physical cover and the manifold element. The mathema-
tical cover system is a set of small patches that must large enough to
cover the whole considered physical domain. Each small patch is
termed as a mathematical cover, denoted by Mi, i¼1�nM. The
physical covers are formed by both mathematical covers and physical
domain. When a mathematical cover is divided by physical bound-
aries, only the fraction inside the physical domain forms a physical
cover. If a mathematical cover Mi is completely divided into two or
more smaller domains by joints or physical boundaries, these smaller

separated domains are defined as physical covers, denoted by Pj
i,

j¼1�ni
P . If a mathematical coverMj has only one physical cover, and

then the corresponding physical cover P1
j is simply denoted by Pj. The

common domain of physical covers, e.g. Pj1
i , P

j2
j andPj3

k , is defined as a

manifold element, denoted byEðPj1
i ; P

j2
j ; P

j3
k Þ, where Pj1

i , P
j2
j andPj3

k are

the j1th, the j2th and the j3th physical cover of mathematical cover
Mi, Mj and Mk, respectively.

In order to explain these three concepts clearly, an example is
illustrated in Fig. 1. The regular hexagon with bold edges
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Fig. 1. Covers and elements in the NMM.
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