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1. Introduction

The usage of boundary element methods to solve the time-
domain integral equations (TDIE) [1] for the transient analysis of
the wave radiation and scattering problems [2] has been of
continuous interest in computational electromagnetic and numer-
ical modeling communities for almost half a century [3]. The
temporal discretization of the (TDIE) is commonly accomplished
by either the implicit marching-on-in-time (MOT) schemes using
subdomain Lagrange polynomial interpolation [4] or the always-
stable marching-on-in-order/degrees (MOD) of Laguerre entire-
domain bases [5]. An alternative approach for discretizing the time
convolution integrals in the TDIE, competitive to the time basis
functions expansions in the MOT or MOD recipes, is the Lubich's
convolution quadrature methods (CQM) [6], using the (first or)
second order backward finite difference (BFD) approximations in
the Laplace domain. As a great advantage, in modeling dispersive
dielectric material where the relative permittivity e,(s) and per-
meability y.(s) and the Green's functions are functions of s (e.g., in
Debye equation for the complex permittivity), the usage of CQM
for time-discretization in the Laplace domain let the frequency-
dependent characteristics be directly incorporated into the time-
domain solver [7].

The underlying physics describing the wave scattering process
is time invariant [8], as the material properties do not change over
time. The CQM, hence, can be utilized to transform continuous-
time representation of the time-invariant integral kernel (system
transfer function) to discrete-time domain while approximating
the TDIE derivatives in the spectral domain. The CQM have been
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successfully applied to transient heat conduction [9], acoustic
wave propagation [10], elastic and viscoelastic dynamic problems
[11] as well as poroelastic formulations [12]. The CQM are called
finite difference delay modeling (FDDM) when the scattering
analysis of arbitrarily shaped three-dimensional (3D) structures
is carried out in a marching style [13]. The FDDM is a provably
stable method when the Lubich's CQM for the time discretization
is used in conjunction with the Galerkin moment method for
the spatial discretization [14]. In the mathematical literature, the
method is called convolution quadrature when it applies to the
single layer potential for the Helmholtz operator [15]. It is also
called Tustin's method in digital signal processing and control
theory to transform continuous-time representation (transfer
function) of a linear time-invariant system to discrete-time
domain.

In the CQM or FDDM methods, a conformal mapping from the
Laplace domain to the z-transform domain (bilinear transform)
based on a finite difference formula accomplishes the discretiza-
tion in the z-domain, and the result is inverse transformed to
create a time-domain method. The bilinear transformation pre-
serves the stability by exact mapping every point of the jw-axis in
the s-plane onto the unit circle |z| = 1 in the z-plane. Following this
approach, each frequency response of the continuous-time system
can be processed using a discrete-time filtering technique. The
numerical solution of retarded functional equations can benefit
from this frequency wrapping once the system's unit delays are
replaced by first order all-pass filters z—! in the discrete domain,
as schematically depicted in Fig. 1.

The system eigenvalue analysis of the FDDM on small-scale
case studies reported in [16] revealed that the CQM render a
symplectic energy-conserving time integrator for the numerical
solution of the TDIE. The temporal discretization is carried out by
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Fig. 1. Block diagram of the time discretization/integration procedures by the CQM
or FDDM methods.

either first or second order BFD approximation when the trans-
formed TDIE is mapped from the Laplace domain to the z-transform
domain. Implicit Runge-Kutta schemes can also be applied for the
temporal discretization when mapping from the Laplace domain
to z-domain. Thereafter, s parameter is replaced with a matrix
function of z and the inverse z-transform is computed numerically
using the discrete Fourier transform (DFT) [17]. The BFD approx-
imations of greater than second order are, however, never abso-
lutely stable. The absolutely stable (A-stable) Radau IIA methods
with two- and three-stage has third- and fifth-order convergence,
respectively.

Wang et al. [13] determine the time derivative of the combined
field integral equation (CFIE) in conjunction with the higher-order
spatial bases. The time derivative of the integral equations,
however, seeks for derivative of the transient excitation that may
not be available for impulsive pulses. The CQM can also be applied
to solve the original form of the electric field integral equation (EFIE)
containing a time integral [16]. In this paper, the FDDM is also
adopted to the primary EFIE without additional time derivative as
well as separately to the magnetic field integral equation (MFIE)
with a single time derivative, using the linearly varying divergence-
conforming space basis functions. Additionally, the calculations of
recursive convolutions are accelerated here using the time-FFT
algorithms on Toeplitz block aggregates of the retarded interaction
matrices [14].

2. TDIE and CQM methods

Let S denotes the surface of a perfect electric conducting (PEC)
body that is excited by a transient electromagnetic field E'(r, t).
The total tangential electric field on S remains zero for all times.
As a result, the induced surface current vector J(r, t) satisfies the
following time-domain EFIE:

Mo J(r D ds
471 ot Js 4]7:6
= El(ra t) (])

Vl' J(r t/) dt/ ds/

where Ei(r,t)=1 x (fi x E((r,t)), R=|r—r'| and the observation
point r and the source point r’ indicate arbitrarily located points
on the surface S and i denotes an outward-directed unit vector
normal to S at field point r. The variable 7 =t—R/c is the retarded
time, in which the speed of wave propagation c=1//fi€ is
determined through the permeability x# and permittivity € of the
surrounding environment.

The derivative counterpart of the EFIE (DEFIE) is also of interest
to preferably avoid the laborious computation of charge accumu-
lation in solving the original EFIE (1) by the MOT methods. The
DEFIE is obtained by taking a time derivative from both sides of (1)
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Note that the Hertz vector potential can also be adapted to solve
the EFIE [5] instead of direct solving for the unknown surface

current. Evidently, the Hertz approaches demand extra post-
processing stages for computation of some desired electromag-
netic quantities. Excluding the temporal derivation on the excitation
term, the Hertz approach results in formulations identical to the
DEFIE (2).

Considering S as a closed surface, one may also consider the
time-domain MFIE
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where Sy denotes the surface S from which the contribution of the
singularity at R=0 has been removed [14].

To numerically solve the time-domain EFIE (1), DEFIE (2), and
MFIE (3) or any linear combinations of them, they are first
transferred to the Laplace domain
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The unknown induced surface current density j(r,s) is approxi-
mately expanded using Bernoulli's separation of variables in the
space and Laplace domains by
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where T,(s) are unknown weighting coefficients of the spatial

vector basis functions f(r). Substituting (7) in the EFIE (4), the
DEFIE (5), and the MFIE (6) respectively gives
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Performing the Galerkin's testing procedure in space using the
same set of vector basis functions f,(r),m=1,2,...,M, respec-
tively, then gives
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