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a b s t r a c t

This paper presents an efficient and automatic scheme for modelling the growth of multiple cracks
through a two-dimensional domain under fatigue loading based on linear elastic fracture mechanics. The
dual boundary element method is applied to perform an analysis of the cracked domain and the
J-integral technique is used to compute stress intensity factors. Incremental crack propagation directions
are evaluated using the maximum principal stress criterion and a combined predictor–corrector
algorithm implemented for propagation angle and increment length. Criteria are presented to control
the mesh used on the slower growing cracks in the domain, improving computational efficiency and
accuracy by the use of virtual crack tips to avoid the need for severe mesh grading. Results are presented
for several geometries with multi-site damage, and sensitivity to incremental crack length is
investigated. The scheme demonstrates considerable advantages over the finite element method for
this application due to simplicity of meshing, and over other boundary element formulations for
modelling domains with large ranges of crack growth rates.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fatigue is a common mode of failure in materials subjected to
cyclical loading. Here, cracks propagating through a structure
reach a critical length, upon which a sudden and often cata-
strophic fracture failure occurs. The growth of cracks can be
difficult to detect and monitor, necessitating the requirement for
methods to simulate the behaviour of such cracks.

Modern structures and components can contain many thousands
of sub-critical cracks and therefore an important design considera-
tion is the extent of crack growth that can be sustained by the
structure safely within its designed life. The damage tolerance
approach to the fatigue assessment of a structure requires engineers
to monitor cracks and also be able to calculate the remaining life. In
order to make accurate calculations, detailed crack growth calcula-
tions must be performed. This is often done with the use of
numerical elasticity calculations (e.g. with the finite element method
(FEM)) in combination with a crack growth law.

A further consideration is multi-site damage, where a compo-
nent contains multiple cracks of different sizes that can propagate
at different rates and the interaction of cracks becomes significant.
This phenomenon was brought into focus in 1988 when Aloha
Airlines flight 243 experienced an explosive decompression

following a structural failure of the fuselage in flight. The National
Transportation Safety Board [1] determined in its accident report
that the cause of the damage was failure of a fuselage lap joint
from multi-site fatigue cracking. The consideration of multi-site
damage has since become a critical consideration in aircraft design
and maintenance; however, numerical simulation of multi-site
fatigue crack growth remains challenging.

The increasingly complex geometries and crack interactions that
are present in modern engineering structures require the develop-
ment and use of numerical methods to simulate the propagation of
cracks and to compute the resultant effect on stress fields. Linear
Elastic Fracture Mechanics (LEFM) has long been used in damage
tolerance assessments for cracked bodies. Here it is assumed that the
crack tip plastic zone is small in comparison with the crack length. A
complication arising in LEFM, and a particularly important one in
performing numerical simulations, is that a stress singularity is
present at the crack tip, so that values of local stress components
become of limited use in assessing the stability of the crack and its
propagation properties. Instead, stress intensity factors, K I and K II,
are used to provide a convenient measure of crack stability, and also
describe components, sij, of the stress tensor in the vicinity of the
crack tip. For a pure mode I crack, for example, the stress field around
the crack tip is given, in the usual polar coordinate system (r, θ)
centered on the crack tip, by

sijðr;θÞ ¼
K Iffiffiffiffiffiffiffiffi
2πr

p f ijðθÞþHigher order terms… ð1Þ
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where K I is the mode I stress intensity factor and fij is a dimension-
less function of θ, the angular coordinate measured from the crack
axis (see Fig. 1). As r-0, a singularity of order r�1=2 develops and the
stress sij-1. The stress intensity factor is thus a scaling factor
which indicates the severity of the singular crack tip stress field.

In numerical simulations using any method based on LEFM,
cracks are modelled in incremental analyses whereby a crack is
incremented by a pre-calculated length and an analysis of the
stress field in the structure is conducted and new stress intensity
factors found. The crack propagation angle for each increment can
be determined as a function of the stress intensity factors.

The FEM has been at the forefront of numerical simulation for
decades and has been successfully used in fracture mechanics
applications considering crack propagation [2]. However, when
applied to iterative crack growth schemes, the FEM requires
extremely fine meshing around crack tips to resolve the high
stress gradients, and each increment in the analysis requires a re-
meshing of the domain. These problems were addressed by Moës
et al. [3] who developed the extended finite element method
(XFEM), which adds local enrichment to model the crack inde-
pendently of the finite element mesh.

The scaled boundary finite element method [4] is an alternative
approach which has benefits arising from (i) a reduced dimen-
sionality of modelling, and (ii) a semi-analytical approach that can
capture the leading order terms in the expansion (1) and yield
stress intensity factors directly. However, the approach can
become cumbersome for all but the simplest geometries.

The boundary element method (BEM) has become popular for
modelling of fractures, and particularly for crack growth. This
removes the need for remeshing, as only the boundary (including
crack surfaces) are meshed, allowing subsequent increments to be
considered simply by adding incremental elements to the existing
mesh. The method is also well known for providing accurate
boundary solutions to discontinuous fields. Using the classical
form of the BEM, however, it is not possible to achieve a solvable
system of equations in a single region, since collocation at
coincident nodes on opposing crack surfaces causes the number
of independent equations in the system to become insufficient.
The Dual Boundary Element Method (DBEM) (see Hong and Chen
[5], Portela et al. [6], and Chen and Hong [7]) addresses this by
defining separate equations on collocated surfaces of the crack,
one as a function of displacement and the other of traction, giving
a non-singular system of equations which can be solved. The
method has been applied to both single and multiple crack
problems [6,8–11].

This paper presents an algorithm for the application of the
DBEM to the incremental analysis of multi-site damage crack
growth problems. In the evaluation of crack tip stress intensity
factors, the J-integral is used, and for calculating crack paths the
predictor–corrector technique proposed by Portela et al. [6] has
been incorporated into a multiple crack algorithm. Fatigue analysis
based on Paris law is adopted for simplicity, although other crack

growth laws could easily be substituted. Further correction for
increment length is implemented based on Salgado and Aliabadi
[9], and new growth criteria are developed to control the exten-
sions of cracks where a range of growth rates are present.
Examples for multi-site damage fatigue problems are presented
including single crack examples for validation and a series of
multi-site damage applications with relevance to modern engi-
neering structures.

The paper is organised in the following fashion. In Section 2, we
present the DBEM and its application for fatigue crack growth. In
Section 3, we extend the discussion to multi-site damage, pre-
senting a new algorithm which includes the possibility of virtual
crack extensions, and the approach is formalised in Section 4. In
Section 5 we present validating examples, and discuss the perfor-
mance of the algorithm. We close with some concluding remarks
in Section 6.

2. The dual BEM for fatigue crack growth

We start by defining our two-dimensional domain Ω�R2,
having Lipschitz boundary Γ≔∂Ω. The static equilibrium state of
an elastic body described by the domain can be expressed in the
following way:

sij;jþbi ¼ 0 ð2Þ

where s is the Cauchy stress tensor and b represents the body
forces per unit volume. The stress tensor is related to components
of the strain tensor, ε, through the constitutive relations:

sij ¼ Cijklεkl ¼ λεkkδijþ2μεij ð3Þ

and the strains are displacement derivatives according to the
definition:

εij ¼ 1
2 ðui;jþuj;iÞ: ð4Þ

In the above λ is the Lamé constant, given by

λ¼ 2μν
1�2ν

; ð5Þ

μ is the shear modulus, given by

μ¼ E
2ð1þνÞ; ð6Þ

δ is the Kronecker delta, E is Young's modulus, ν denotes Poisson's
ratio and ui are the displacements. In addition, the strains have to
satisfy the compatibility equations:

∂εij
∂xj∂xk

� ∂
∂xi

�∂εjk
∂xi

þ∂εik
∂xj

þ∂εij
∂xk

� �
¼ 0: ð7Þ

We consider a boundary value problem in which the above
differential equations are solved subject to some Dirichlet and
Neumann boundary conditions, respectively

uiðxÞ ¼ u; xAΓu ð8Þ

tiðxÞ ¼ t ; xAΓt ð9Þ
where ti is a traction component and the overbars denote
prescribed values. The Dirichlet and Neumann boundaries, Γu

and Γt, form the entire boundary, so Γ ¼Γu [ Γt . Betti's reciprocal
work theorem is applied to form the Boundary Integral
Equation (BIE) for displacements at a point x0AΩ\Γ, in terms of
tractions and displacements at all points on Γ. Taking for simpli-
city bi ¼ 0, i¼ 1;2, this yields

uiðx0Þþ
Z
Γ
Tijðx0;xÞujðxÞ dΓðxÞ ¼

Z
Γ
Uijðx0; xÞtjðxÞ dΓðxÞ; ð10Þ

Fig. 1. Circular J-integral contour path and coordinate reference system relative to
crack tip.
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