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In this paper, the Trefftz collocation method is applied to solve the inverse Cauchy problem of
anisotropic elasticity, wherein both tractions as well as displacements are prescribed at a small part of
the boundary of an arbitrary simply/multiply connected anisotropic elastic domain. The Stroh formalism
is used to construct the Trefftz basis functions. Negative and positive power series are used together with
conformal mapping to approximate the complex potentials of the Stroh formalism. For inverse problems
where noise is present in the measured data, Tikhonov regularization is used together with the L-curve
parameter selection method, in order to mitigate the inherent ill-posed nature of inverse problems. By
several numerical examples, we show that this simple and elegant method can successfully solve inverse
problems of anisotropic elasticity, with noisy measurements, in both simply and multiply connected
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1. Introduction

Computational modeling of solid/fluid mechanics, heat transfer,
electromagnetics, and other physical, chemical & biological
sciences have experienced an intense development in the past
several decades. Tremendous efforts have been devoted to solving
the so-called direct problems, where the boundary conditions are
generally of Dirichlet, Neumann, or Robin type. Existence, unique-
ness, and stability of the solutions have been established for many
of these direct problems. Numerical methods, such as finite
elements, boundary elements, finite volume, meshless methods,
have been successfully developed and are available in many off-
the shelf commercial softwares, see [1]. On the other hand, inverse
problems, although being more difficult to tackle and being less
studied, have equal, if not greater importance in the applications
of engineering and sciences.

One of the many types of inverse problems is to identify sources
or inaccessible boundary fields with over-specified measurements at
only part of the boundary, i.e. the Cauchy problem. Take elasto-static
solid mechanics as an example. Consider a domain of interest £2,
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displacements 1; are prescribed at S, and tractions t; are prescribed
at S;.. If S, and S; form a complete division of 0f2, ie.
Sy US=002,S, NSt =@, then a direct problem is to be solved.
Otherwise, if both the displacements u; as well as tractions ¢; are
only prescribed at part of the boundary S, then an inverse Cauchy
problem is to be solved.

In spite of its wide popularity, the finite element method is
unsuitable for solving inverse problems. This is mainly because the
symmetric Galerkin weak form prohibits one from prescribing
both displacements as well as tractions at the same part of
boundary. Therefore, in order to solve the inverse problem by
FEM, one needs to iteratively solve a direct problem, and minimize
the difference between the solution and measurement by adjust-
ing the guessed boundary fields, see [2-4] for example. Recently,
simple non-iterative methods have been under development for
solving inverse problems without using the symmetric Galerkin
weak-form: with global RBF as the trial function, collocation of the
differential equation and boundary conditions leads to the global
primal RBF collocation method [5,6]; with Kelvin’s solutions as the
trial function, collocation of the boundary conditions leads to the
method of fundamental solutions, see [7,8]; with non-singular
general solutions as the trial function, collocation of the boundary
conditions leads to the boundary particle method [9-11]; with
Trefftz trial functions, collocation of the boundary conditions leads
to the Trefftz collocation method [12-15]. The common idea they
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share is that the collocation method is used to satisfy either the
differential equations and/or the boundary conditions at discrete
points. Collocation method is one of the most simple, efficient, and
flexible methods, which allow both the tractions and displace-
ments to be prescribed at the same location. Moreover, collocation
method is also more suitable for inverse problems because
measurements are most often made at discrete locations.

Among the various methods, the Trefftz method has shown
extremely high efficiency and accuracy, provided that a relative
complete trial function is used [14-18]. For a two-dimensional
problem such as 2D Laplace equations and linear elasticity, the
general solutions can mostly be expressed as analytic functions of
complex variables. The completeness of the Trefftz trial functions
therefore solely depends on how an analytic function should be
approximated in a complex plane. Based on a detailed discussion
in [14], a generalized Trefftz method is proposed to solve two-
dimensional isotropic linear elasticity with arbitrarily shaped
multiply connected domains. The later successful application of
it in the direct numerical solution (DNS) of heterogeneous materi-
als considering a large number of voids or inclusions [18-21], also
demonstrated the ability of generalized Trefftz method in solving
problems of 2D and 3D multiply connected domains.

In this paper, we combine and follow the work of [14] and [22-24]
to apply the Trefftz method on the basis of Stroh Formalism to solve
inverse problems of anisotropic elasticity, which was firstly dealt with
in [25], in multiply connected domains. In Section 2, we introduce the
Stroh formalism for two-dimensional anisotropic elasticity, with
special attention being paid to how complex potentials f,(z,) should
be selected to construct the Trefftz trial functions. In Section 3, we give
the detailed algorithm of Trefftz collocation method for inverse
problems of anisotropic elasticity. Specifically, a simple regularization
algorithm is given to increase the robustness of the algorithm when
noise is considered. After that, several numerical examples are given in
Section 4, to study the accuracy, convergence, and robustness of the
proposed method. At last, some concluding remarks are made in
Section 5.

2. Stroh formalism for anisotropic elasticity

Considering a linear elastic solid undergoing infinitesimal
elasto-static deformations, the equations of linear and angular
momentum balance, constitutive equations, and compatibility
equations can be written as

oiji+fj=0, 0j=0j
0ij = Cijuén
1
&jj = 5(Uij +Uj1) = U M

where the Einstein summation convention on repeated indices
is used.
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This leads to the Navier's equations with displacements as
primary variables, for a homogenous elastic body:

Ciattisi+f; =0 2)

Here Cjj, are the components of the fourth-order elasticity tensor
for a homogenous solid.

For plane problems where body forces are negligible, the
general solution of the Navier’s equation (2) can be expressed
through the Stroh Formalism. According to Ting’s monograph [24],
we have

4
u= z]a(lfa(ztl) 3)
q:

Za =X1+DaX2 (4)

fua(zq) is an arbitrary analytic functions of z,, and p,, and a, are the
eigenvalues and eigenvectors of the following eigen-equation:

{Q+p(R+R")+p’Tia=0 5)
which is equivalent to
-T 'R" T! a a
RT 'RT_Q (—T_1RT)T]{b}:p{b} (6)
For plane elasticity, Q, R, T are 2 by 2 real matrices given by
Qik = Citk1. Rik = Citkz. Tike = Ciokz (7)
Eq. (5) will give two pairs of conjugate solutions:

Pai2=DPg> Az4+2=aq, byi2=bs, a=1,2 8)

Letting f, ., =f,, then Eq. (3) can be re-written as

2
u=2Re Y a,f,(za) 9)
a=1
And corresponding stresses can be expressed as
O = —Pip, 0 =Dy
2
® =2Re Y buf,(za) (10)
a=1

Now that general expressions for displacements and tractions have
been worked out, the main issue is how the function f,(z,) should
be approximated for numerical implementation.

According to [13], when a simply connected domain is con-
sidered, it is reasonable to express the complex potentials with
positive power series, representing modes of tension, shear,
bending, etc.:

N
falza)= go(iAﬁ°+B‘,f°)(za —z)". an

where 79 =x;+p,X, with (x1,X;) being the source point placed
inside the domain.

For a doubly connected domain, we can locate the source point
inside the cavity, and apply conformal mapping from z, plane to
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Fig. 1. Conformal mapping from an ellipse to a unit circle.
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