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a b s t r a c t

The paper aims to develop the efficient method tailored for accurate, robust and stable calculations of 2D
local fields in strongly inhomogeneous materials with arbitrary interaction conditions on multiple
contacts of structural blocks. The method is also to be of immediate use for solving homogenisation
problems.

To reach the goal we employ: (i) special forms of the complex variable singular and hypersingular
integral equations with the densities representing those physical quantities, which enter the contact
conditions; (ii) circular-arc boundary elements (in addition to straight elements) for smooth approxima-
tion of smooth parts of the external boundaries and contacts; (iii) higher order approximations of
densities, which account for arbitrary power asymptotics of physical fields near singular points (crack
tips, corner points, common apexes of structural blocks); (iv) analytical recurrent evaluation of all
influence coefficients; (v) analytical recurrent evaluation of all moments; (vi) the complex variable fast
multipole method (CV FMM), for solving the resulting system of the complex variable boundary element
method (CV BEM), with large number (up to million) of unknowns.

As a result, we obtain free of numerical integration, higher-order CV fast multipole boundary element
method (CV FM-BEM) for a medium with multiple structural elements and multiple singular points. In
the due course, we suggest the simplified starting quadrature formulae for singular boundary elements,
the adjustment of the procedure for building the hierarchical tree and the proper choice of the key
parameters of the developed CV FM-BEM: the number of elements in a leaf; the number of moments
in the truncated Taylor expansions; the reasonable tolerance, when iteratively solving the system by
the FMM.

Numerical examples illustrate the abilities of the method developed, as regard to local fields in
strongly inhomogeneous structures with multiple singular points. The study of local fields shows
application of the method to finding extreme distributions of stress intensity factors in a medium with
many cracks, which may intersect. The homogenisation problem is solved, as well.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Real materials being inhomogeneous at various structural
scales, it is of value for many practical applications to get knowl-
edge on local fields and average properties at a given level
of structure. At a level with piece-wise homogeneous structure,
the study unavoidably involves multiple interfaces of structural
blocks, lines of their intersections and angular points. Commonly,
the intersection lines and points are sources of strong field

concentration, where unfavourable effects (fracture, corrosion,
fatigue, energy loss, etc.) nucleate or accumulate. Therefore, from
the physical point of view, accounting for multiple interfaces, lines
and points of their intersections is crucial for proper modelling of
physical processes. On the other hand, they strongly influence the
accuracy of conventional numerical methods when finding local
characteristics (potential, flux, stresses, strains, flux and/or stress
intensity factors). Thus from the computational point of view, it is
reasonable to use those numerical methods, which e asily account
for field discontinuities, complicated interface conditions and
asymptotic behaviour of fields near singular points.

In the case, when the structural blocks (including the matrix in
composites) may be described by linear constitutive equations, the
direct boundary integral equations (BIEs) (see, e.g. [1–14]) present
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the appropriate choice among the major classes of computational
methods, including the finite element methods, finite difference
methods, discrete element methods and particle methods. The
direct BIEs are formulated in terms of physical quantities and they
reduce the problem to considering the values of these quantities at
interfaces. The direct BIEs become especially convenient for meet-
ing non-trivial interface conditions, when the densities represent
the very physical quantities, which enter the constitutive equa-
tions describing contact interactions.

In this paper, we consider 2D potential (harmonic) and elasti-
city (biharmonic) problems for strongly inhomogeneous media
composed of piece-wise homogeneous structural blocks, which
may have multiple cracks, pores and inclusions. Our aim is to
develop the efficient general method tailored for accurate, robust
and stable calculations of local fields in strongly inhomogeneous
media. The method is also to be of immediate use for solving
homogenisation problems.

Naturally, when considering plane problems, there is a possi-
bility to use complex functions of the complex variables (CV) (see, e.
g. [15–22]). Their analytical advantages over real variables, arising
from holomorphicity of such functions in 2D elliptic problems,
have been employed in numerous publications. Computational
advantages of the CV are also significant; they have been sum-
marised, for instance, in the introduction to the book [13], as
concerns with solving the BIEs by conventional methods, and
outlined in the papers [23–27], as regard to solving BIE by using
the fast multipole method (FMM).

For problems, involving inclusions, the special forms of the CV
equations have been employed for decades (see, e.g. [28–31]). The
authors of these works focused on so-called perfect contact
conditions, when both tractions and displacements are continuous
through an interface. Commonly, these equations are of the
indirect type what strongly complicates their extension to arbi-
trary interface conditions. The general forms of the CV equations,
suggested in [32] for elasticity problems with arbitrary contact
conditions, are still inconvenient for computations because, being
singular, they contain as densities either the tangential derivative
of the displacement discontinuities (DD) or the principal force,
while the contact conditions involve the DD and the tractions. The
latter quantities become the densities only when using hypersin-
gular BIE.

The complex variable hypersingular integrals and complex
variable hypersingular boundary integral equations (CV H-BIEs)
were firstly introduced for elasticity problems [33,34]. Their
theory was developed in [12,35–39] (a detailed review and
complete theory may be found in [13]). Then the general CV
H-BIE for elastic blocky systems with cracks, pores and inclusions,
with arbitrary contact conditions, involving the displacement dis-
continuities and tractions, became available (e.g. [12,33,40–46]).
Analogous CV equations for the potential problems have been
derived later [47,48] following the same line.

Below, we use these CV BIEs as basic for our purpose. To solve
them, we employ the special form of the CV BEM, which meets the
requirements of computational efficiency (accuracy, robustness
and stability). The accuracy is increased by using appropriate
approximations for both the integration contour and the density
functions. The smooth approximation of the smooth parts of the
contour is reached by using circular-arc elements [12,39,43,49,50]
(in addition to common straight elements for straight parts). As
noted in [12], such elements provide the possibility to have
continuous tangent at common edge points of neighbouring
elements. What is also of significance, evaluation of the influence
coefficients over such elements is easily performed by employing
the recurrent analytical formulae, derived in [12,13,39,44,50] for
densities approximated by basis functions from a very wide class.
The class includes CV polynomials of an arbitrary order and the

product of a power function with an arbitrary rational exponent
and an arbitrary polynomial. The class is sufficient for accurate
approximations of both smooth and singular behaviour of densi-
ties. Similar formulae in real variables look formidable, even for
the lowest degrees of polynomials, and they hardly can be derived
without using the CVs.

The mentioned recurrent analytical evaluation of the influence
coefficients notably decreases the time expense, as compared with
numerical integration. Numerical tests and experience (e.g.
[12,13,37,39,41–43,46,49–51]), gained to the date, show that these
forms of the CV BEM provide accurate and stable results. However,
for strongly inhomogeneous media, the number of degrees of
freedom (DOFs) becomes too large to solve the resulting algebraic
system by the conventional exact or iterative methods. The
problem of excessive growth of memory and time expense is
overcome by employing the fast multipole method (FMM), sug-
gested in [52,53].

The FMM employs two key ideas: (i) multipole expansions to
account for combined influence of elements, which are far enough
from a considered point, and (ii) a hierarchical tree with transla-
tions of moments to neighbouring levels of the tree. They reduce
the number of operations, for iterative solving a system of order N,
from N3 to N. The FMM does not require keeping the whole matrix
of the system. These features make it economic and robust. Its
stability is reached by using appropriate pre-conditioners.

The computational gains, provided by the key elements of the
FMM, have been used for solving problems with large number of
DOFs (see, e.g. [14,23–27,54–61]). The detailed description of the
FMM algorithm is given in the tutorial [24] and in the monograph
[27], containing also examples, which may serve as benchmarks.
The advantage of using the CV forms of the FMM is outlined in the
papers [23–27]. Below we follow this line and perform all the
calculations in the CV form.

Employing the FM-BEM involves integrals (multipole moments)
additional to those defining the influence coefficients. In particular
cases, they are evaluated analytically. Specifically, analytical formu-
lae have been used to calculate moments for zero-order approx-
imations of both contour and densities [23–27]. Another way to
avoid numerical integrations is used when the boundaries have
particular shapes of circles and/or straight segments [61]. It consists
in looking for the solution in the form of complex Fourier series (for
circles) and series of weighted Chebychev polynomials (for straight
cracks). In this way the geometry is accounted for exactly, while the
densities are approximated to high accuracy. In the general case of
using higher-order approximations, the moments have been eval-
uated numerically (e.g. [62]). Meanwhile, to further reduce the time
expense and integration errors, it is reasonable to use analytical
rules rather than numerical integration. The possibility to obtain
analytical formulae for higher-order approximations has been
addressed in [63]. In this paper, we derive the needed recurrent
analytical formulae for a wide class of higher-order approximations
of both the contour and densities.

As a result, we obtain free of numerical integration, higher-
order CV FM-BEM for a medium with multiple structural elements
and multiple singular points. We employ: (i) the special forms of
the CV singular and hypersingular BIE with the densities repre-
senting the physical quantities, which enter the contact condi-
tions; (ii) circular-arc boundary elements (in addition to straight
elements) for smooth representation of smooth parts of the
external boundaries and contacts; (iii) higher order approxima-
tions of densities, which account for arbitrary power asymptotics
of physical fields near singular points (crack tips, corner points,
common apexes of structural blocks); (iv) analytical recurrent
evaluation of all influence coefficients; (v) the CV FMM for solving
the resulting system of the CV BEM with analytical recurrent
evaluation of all moments.

E. Rejwer et al. / Engineering Analysis with Boundary Elements 43 (2014) 105–116106



Download English Version:

https://daneshyari.com/en/article/512508

Download Persian Version:

https://daneshyari.com/article/512508

Daneshyari.com

https://daneshyari.com/en/article/512508
https://daneshyari.com/article/512508
https://daneshyari.com

