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a b s t r a c t

The von Karman plate theory of large deformations is applied to express the strains, which are then

used in the constitutive equations for magnetoelectroelastic solids. The in-plane electric and magnetic

fields can be ignored for plates. A quadratic variation of electric and magnetic potentials along the

thickness direction of the plate is assumed. The number of unknown terms in the quadratic

approximation is reduced, satisfying the Maxwell equations. Bending moments and shear forces are

considered by the Reissner–Mindlin theory, and the original three-dimensional (3D) thick plate

problem is reduced to a two-dimensional (2D) one. A meshless local Petrov–Galerkin (MLPG) method

is applied to solve the governing equations derived based on the Reissner–Mindlin theory. Nodal points

are randomly distributed over the mean surface of the considered plate. Each node is the centre of a

circle surrounding it. The weak form on small subdomains with a Heaviside step function as the test

function is applied to derive the local integral equations. After performing the spatial MLS approxima-

tion, a system of algebraic equations for certain nodal unknowns is obtained. Both stationary and time-

harmonic loads are then analyzed numerically.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetoelectroelastic (MEE) materials have found much
application as sensors and actuators for the purpose of monitor-
ing and controlling the response of structures. The MEE layers are
frequently embedded into laminated composite plates to control
the shape of plates. The magneto-electric forces give raise to
strains that could reduce the effects of the applied mechanical
load. Hence, advanced structures can be designed using less
material and hence less weight. Pan [1] and Pan and Heyliger
[2] presented analytical solutions for the analysis of simply
supported MEE laminated rectangular plates, under static defor-
mation and free vibration. Recently, Wu et al. [3] extended the
Pagano solution for the three-dimensional (3D) plate problem to
the analysis of a simply supported, functionally graded rectan-
gular plate under MEE loads. Liu and Chang [4] studied the
vibration of a MEE rectangular plate. To the authors’ knowledge,
little work has been carried out on the geometrically nonlinear
problems occurred at large plate deformations. So far, only one
paper [5] is dealing with the nonlinear behaviour of a MEE plate,
where a simplified analytical solution was given for a thin simply
supported MEE plate under a large deformation. The Kirchhoff
plate bending theory with vanishing shear stresses was utilized.

The conventional von Karman-type nonlinear field equations
for the finite deflection of plates are based on the Kirchhoff-Love
assumption and follow inevitable coupling between in-plane and
bending deformations, which makes analytical solutions difficult.
Therefore, a simplified governing field equation known as the
decoupled Berger equation [6] is also used for geometrically
nonlinear deformation of plates. The Berger equation could be a
fairly good approximation to the corresponding rigorous solution,
provided that the in-plane displacements are constrained at the
boundary [7]. Among the early proposals for analysing the final
deflection of thin plates is the work by Kamiya and Sawaki [8].
The first finite element analysis of geometrically nonlinear plate
behaviour using a Mindlin formulation was given by Pica et al. [9].
The boundary element method (BEM) was applied by Lei et al. [10]
in the geometrically nonlinear analysis of laterally loaded isotropic
plates, taking into account the effect of transverse shear deforma-
tion. A nonlinear analysis of Reissner plates by BEM was given by
Qin [11]. Wen et al. [12] analyzed the post-buckling of Reissner
plates. Recently, a strong formulation with multiquadric radial basis
function was applied to the isotropic Reissner–Mindlin plates with
geometrical nonlinearity [13].

The solution of the boundary or initial boundary value pro-
blems for MEE plates with large deformations requires advanced
numerical methods due to the high mathematical complexity.
Besides the well established finite element method (FEM) and the
BEM [14,15], the meshless methods provide an efficient and
popular alternative to these traditional computational methods.
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Focusing only on nodes or points instead of elements used in the
conventional FEM, meshless approaches have certain advantages.
The elimination of shear locking in thin walled structures by FEM
is difficult and the developed techniques are less accurate. The
moving least-square (MLS) approximation ensures C1 continuity
which satisfies the Kirchhoff hypotheses. The continuity of the
MLS approximation is given by the minimum between the
continuity of the basis functions and that of the weight function.
So continuity can be tuned to a desired degree. Previous results
showed excellent convergence for linear problems [16–18], how-
ever, up to now the formulation has not been applied to large
deflection of MEE plate problems. Recently, new class of hybrid/
mixed finite elements, denoted as HMFEM-C, was developed for
modelling two-dimensional (2D) problems in MEE materials [19].
These elements were based on assuming first the independent
strain, electric and magnetic fields, and then collocating them
with the strain, electric and magnetic fields derived from the
primal variables (mechanical displacement, electric and magnetic
potentials) at certain selected points inside each element. The
newly developed elements showed significantly higher accuracy
than the primal elements for the electric, magnetic as well as the
mechanical variables, comparable to the accuracy from the
meshless approach [19]. Up to date, however, these hybrid finite
elements have not been applied to plate bending problems.

One of the most rapidly developed meshfree methods is the
meshless local Petrov–Galerkin (MLPG) method [20]. The MLPG
method has attracted much attention in the past decade and it
has been successfully applied also to plate problems [21–24]. The
modelling of piezoelectric plates has been done by the MLPG too
[25,26].

This paper proposes a nonlinear (or large-deformation) model
for the MEE thick plate under a static and time-harmonic
mechanical load and a stationary electromagnetic load. It is the
first effort to develop the meshless method based on the local
Petrov–Galerkin weak-form to solve dynamic problems for thick
MEE plates under a large deformation described by the Reissner–
Mindlin theory. The electric and magnetic field components are
assumed to be zero in the in-plane directions of the plate. A quadratic
power-expansion of the electric and magnetic potentials in the
thickness direction of the plate is considered. The bending moment,
normal and shear force expressions are obtained by integration
through the plate for the considered constitutive equations. The
Reissner–Mindlin governing equations of motion are subsequently
solved for a time-harmonic plate bending problem. The Reissner–
Mindlin theory reduces the original 3D thick plate problem to a 2D
problem. In our meshless method, nodal points are randomly
distributed over the neutral plane of the considered plate. Each node
is the centre of a circle surrounding this node. The weak form on the
small subdomains with a Heaviside step function as the test function
is applied to derive local integral equations. Applying the Gauss
divergence theorem to the weak form, the local boundary-domain
integral equations are derived. The nonlinear terms occurred in the
normal and shear forces are considered iteratively in the full-load
algorithm. After performing the spatial MLS approximation, a system
of algebraic equations for certain nodal unknowns is obtained.
Numerical examples are presented and discussed to show the
accuracy and the efficiency of the present method.

2. Local integral equations for magnetoelectroelastic plates

We consider a plate of total thickness h with homogeneous
MEE material properties with its mean surface occupying the
domain O in the plane (x1,x2). The axis x3�z is perpendicular to
the mid-plane (Fig. 1) with the origin at the bottom of the plate.

The Cartesian coordinate system is introduced such that the
bottom and top surfaces of plate is placed in the plane z¼0 and
z¼h, respectively. Using the von Karman theory of large deflec-
tion of plates described by the Reissner–Mindlin theory, the
Lagrangian strain displacement relations are given by Pica et al.
[9] and Azizian and Dawe [27]:

e11ðx,x3,tÞ ¼ u0,1þðz�z0Þw1,1ðx,tÞþ 1
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w3,1ðx,tÞw3,2ðx,tÞ,

e13ðx,tÞ ¼ ½w1ðx,tÞþw3,1ðx,tÞ�=2,

e23ðx,tÞ ¼ ½w2ðx,tÞþw3,2ðx,tÞ�=2: ð1Þ

where z0 indicates the position of the neutral plane. For a
homogeneous plate it is located in the geometrical mid-plane.
In-plane displacements in x1- and x2-directions are denoted by u0

and v0. Rotations around x2- and x1-axes are denoted by w1 and
w2, and w3 is the out-of-plane deflection.

The constitutive equations for the stress tensor, electrical
displacement and magnetic induction of the MEE materials are
given by Nan [28]:

sijðx,x3,tÞ ¼ cijkleklðx,x3,tÞ�ekijEkðx,x3,tÞ�dkijHkðx,x3,tÞ, ð2Þ

Djðx,x3,tÞ ¼ ejkleklðx,x3,tÞþhjkEkðx,x3,tÞþajkHkðx,x3,tÞ, ð3Þ

Bjðx,x3,tÞ ¼ djkleklðx,x3,tÞþakjEkðx,x3,tÞþgjkHkðx,x3,tÞ, ð4Þ

where {eij,Ei,Hi} is the set of the secondary field quantities (strain,
intensity of electric field, intensity of magnetic field) which are
expressed in terms of the gradients of the primary fields, i.e., the
elastic displacement vector, electric potential, and magnetic
potential {ui,f,c}. Finally, the elastic stress tensor, electric dis-
placement, and magnetic induction vectors {sij,Di,Bi} form the set
of the fields conjugated to the secondary fields {eij,Ei,Hi}. The
constitutive equations correlate these two sets of fields in con-
tinuum media including the multi-field interactions.

The plate thickness is assumed to be small as compared to its
in-plane dimensions. The normal stress s33 is then vanishing in
comparison with other normal stresses. Assuming also that the
MEE materials process certain material symmetry, one can
formulate the plane-deformation problems [29]. For instance,
for the poling direction along the positive x3-axis the constitutive
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Fig. 1. Sign convention of bending moments and forces for a plate.
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