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In many analyses of engineering problems based on boundary element methods, a large number of

regular and/or singular domain integrals must be accurately evaluated over a single domain. Evaluation

of such domain integrals is very time-consuming and is frequently the main source of errors and loss of

accuracy in the solutions. Previous efforts have been constantly made in order to facilitate or overcome

such shortcomings. In this article, we propose novel and efficient approaches in the framework of

Cartesian transformation method (CTM) and the radial integration method (RIM) that can be used for

fast evaluation of numerous weakly/strongly singular two-dimensional domain integrals over a single

domain. The domain integrals essentially are expressed in terms of some coefficient matrices and

vectors, most of which are independent of the integrand of the domain integrals and are dependent

only on the geometry. Several examples for the evaluation of weakly/strongly singular domain integrals

and two examples for the flow field analysis in micro-channels are presented and the accuracy and

convergence of the proposed approaches are investigated.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The BEM is now extensively used for the solution of engineer-
ing and scientific problems. In the boundary element analysis of
some problems such as transient or nonlinear problems, a large
number of regular and/or singular domain integrals must be
computed with enough accuracy and efficiency. For example, in
the boundary element analysis of the transient heat conduction
problem including a nonlinear domain heat source with a total
number of 1000 boundary and internal nodes, 100 time steps and
three iterations in each time step, 1000�100�3�2¼600,000
domain integrals must be computed [1]. Only a narrow range of
domain integrals can be exactly transformed into the boundary
with no approximations. The domain integrals can be computed
by domain discretization using internal cells. By this way, the
main benefit of the BEM as a boundary method will fade in its
numerical solution procedures. The domain integrals may also be
computed without discretization of the domain, nonetheless; this
requires representing the domain by some internal points and
using global shape functions for approximating the integrand.

The accurate evaluation of domain integrals is a very important
issue in the BEM and is still an important area of research [2–5].

The dual reciprocity method (DRM) [6] is the most popular
technique for the evaluation of the BEM domain integrals. In the
DRM, some internal points should be considered. The location of
internal points can be selected arbitrarily, but the shape or basis
functions used for interpolation in the domain are not arbitrary.
These functions should have particular solutions and they cannot
be selected arbitrarily.

Ochiai presented the triple-reciprocity method [7,8] for mesh-
less evaluation of domain integrals in the BEM. In this method,
effects of domain loadings and initial conditions are interpolated
using auxiliary boundary integral equations. Accurate solutions
can be obtained using this method [9].

Gao presented the radial integration method [10,11] for
evaluation of 2D and 3D domain integrals in the BEM. In the
RIM, the domain integral is transformed into a boundary and a
radial integral. The weak singularity of domain integrals is
automatically treated by the RIM. Recently, Gao and Peng [3]
have presented a new version of the RIM for the evaluation of
higher order singular domain integrals.

Hematiyan presented the Cartesian transformation method
[12,13] for evaluation of 2D and 3D domain integrals in the
BEM. Khosravifard and Hematiyan extended the CTM for evalua-
tion of domain integrals in meshless methods [14]. In the CTM,
a domain integral is transformed into a boundary and a simple 1D
integral. The CTM is very efficient for meshless evaluation of
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domain integrals; however, this method cannot be directly used
for evaluation of singular domain integrals.

The main goal of the present work is to propose a novel
method, which can be used, for fast evaluation of numerous
singular domain integrals with different integrands over a single
domain. The CTM and the RIM are both used in the proposed
method. In the approach to be presented herein, the essential
feature and a key factor is that the domain integrals are not
transformed to the boundary while they are efficiently evaluated
using a meshless procedure without employing any internal cells
or background meshes. The interpolation shape functions used in
the method can be selected arbitrarily and can have very compli-
cated forms. By presenting some numerical examples, it is shown
that the proposed technique is efficient for evaluation of weakly and
strongly singular domain integrals.

The structure of the paper is organized as follows. In Section 2,
a nodal integration method for evaluation of regular domain
integrals is presented. In Section 3, the singular nodal integration
method is developed for the evaluation of the weakly singular
domain integrals, whereas the strongly singular domain integrals
are given in Section 4. Numerical examples are presented and
investigated in Section 5. Finally, the essential conclusions drawn
from the present study are given in the last section.

2. A CTM-based nodal integration method for meshless
evaluation of regular domain integrals

Suppose that we want to compute the following regular
integral over the two dimensional domain O with x¼ ðx,yÞ

I¼

Z
O

f ðxÞdO ð1Þ

In this section, a nodal integration method for the evaluation
of regular domain integrals is presented. The method is essen-
tially developed based on the CTM [12–14]. Firstly; the weighted
values of the integrand at some internal points are found. Then,
by a simple summation of those weighted values, the total value
of the integral is obtained. It is assumed that the values of the
function f ðxÞ at MB boundary points and MI internal points in the
domain O are known (Fig. 1). These nodal points are denoted by
P1, P2, � � � , PM , where M¼MBþMI . Meshless interpolation meth-
ods [15] such as the radial point interpolation method (RPIM) [16]
or the moving least squares approximation method (MLS) [17]
can be employed for obtaining an approximate value of the
function f ðxÞ at an arbitrary point.

By utilizing a meshless interpolation method, the function f ðxÞ
can be expressed in the following general form [15],

f ðxÞ ¼
XM
i ¼ 1

fiðx,yÞf i ¼UTf ð2Þ

where the vector f contains the values of function f ðxÞ at the M

nodal points while U collects the values of the shape functions.
The specific form of U depends on the interpolation technique
used. The formulation of the present work allows the use of any
arbitrary interpolation method. Due to its accuracy and ease of
use, the RPIM is employed in the present work. In the RPIM, radial
and polynomial basis functions are used to obtain a continuous
function that passes over a scattered set of data. The general form
of this interpolating function is written as:

f ðxÞ ¼
Xn

i ¼ 1

RiðxÞaiþ
Xm

j ¼ 1

pjðxÞbj ¼ RT
ðxÞ pTðxÞ

h i a

b

� �
ð3Þ

where Ri is a radial basis function (RBF), and pj is a monomial in
space coordinates. n is the number of nodes in the support
domain of point x, m is the number of monomials used, and ai

and bj are unknown constants to be determined. It is worth
mentioning that the RPIM has a local nature, i.e., not all of the M

nodal points are used for the interpolation of the function at a
point x. Only the nodes which are close to the point x, and are
thus located in the support domain of this point, are used in the
interpolation process. There are several types of RBFs which can
be used in the formulation of the RPIM. In the present paper, the
thin plate spline (TPS) function [15] is used:

RiðxÞ ¼ rZi ð4Þ

where ri is the Euclidean distance between the point x and the ith
node in the support domain, i.e.:

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xiÞ

2
þðy�yiÞ

2
q

ð5Þ

Z in Eq. (4) is a constant parameter, with usual values of 3.001,
4.001, or 5.001 [15]. In this work the value of Z is 4.001.

The RPIM can also be used to obtain a smooth and continuous
function that approximates the spatial derivative of a scattered
set of data. This is done by direct differentiation of Eq. (3), i.e.:

@f ðxÞ

@s
¼
Xn

i ¼ 1

@RiðxÞ

@s
aiþ

Xm

j ¼ 1

@pjðxÞ

@s
bj ¼UT

,sfu, s¼ x or y ð6Þ

In Eq. (6) U is the vector of RPIM shape functions, details of
which can be found in [15]. Now the nodal integration method for
meshless evaluation of the domain integral in Eq. (1) is described.
Fig. 2 depicts the domain O inscribed in a rectangle. The domain
integral can be recast as follows:

I¼

Z d

c
ð

Z b

a
f AðxÞdxÞdy ð7Þ

Fig. 1. Boundary and internal nodes. Fig. 2. A rectangle circumscribed over the domain.
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