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a b s t r a c t

In this paper, a new direct Boundary Element Method (BEM) is presented to solve plates on elastic half

space (EHS). The considered BEM is based on the formulation of Vander Weeën for the shear

deformable plate bending theory of Reissner. The considered EHS is the infinite EHS of Boussinesq–

Mindlin or the finite EHS (with rigid end layer) of Steinbrenner. The multi-layered EHS is also

considered. In the present formulation, the soil stiffness matrix is computed. Hence, this stiffness

matrix is directly incorporated inside the developed BEM. Several numerical examples are considered

and results are compared against previously published analytical and numerical methods to validate

the present formulation.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In structural designs, soil-structural interaction problem is
always point of research where good representation is necessary.
One of the most common methods in design companies is the
Winkler spring method [1]. It is based on representing the soil as
individual springs. Such a model assumes the displacement of
soil medium at any surface point to be directly proportional to
the applied stress and independent of stresses applied to other
locations. The displacement occurs immediately under the
loaded area; whereas displacement outside this region is zero.
The Winkler method is mainly dependent on accurate determi-
nation of the coefficient of sub-grade reaction [2]. There is a
large range of sub-grade reaction values produced from many
methods such as experienced charts and methods based on the
theory of elasticity [2]. The Winkler method does not consider
coupling between springs through soil layers but relies on the
attached footing stiffness [2]. Moreover, the Winkler method
does not take soil layering and most engineers rely on the
surface layer properties or properties of an equivalent layer.
Although this method dates many decades, it is still used until
now because of its simplicity.

The two-parameter elastic models have been developed as
refined soil representations. These models use pre-defined two
independent elastic constants. Some of these models provide
mechanical interaction between Winkler individual springs using

elastic membrane, elastic beams, or elastic layers that carry soil
shear deformations. Examples of such models are the work of
Filonenko-Borodich [3,4], Hetenyi [5], Pasternak [6] and Kerr [7].
Other two-parameter models are based on simplified assump-
tions to the original elastic continuum model, such as the models
of Reissner [8] and Vlasov and Leontiev [9].

It has to be noted that, the sub-grade reaction modulus and
other soil parameters are not mechanical soil properties [2] but
they depend on the shape and the load pattern of the loaded area.

The ACI committee [10] suggested using an elastic half space
technique with the Boussinesq theory instead of the Winkler
model for accurate modeling. Unlike the Winkler and the two-
parameter models, the elastic half space method uses data
obtained from geotechnical investigations.

There are many models that treat soil as an elastic half space.
Among them are the models of Boussinesq [11] and Mindlin [12],
which consider the soil as an elastic, isotropic, homogenous, and
infinite half space. The Steinbrenner elastic half space model [13],
on the other hand, considers presence of a rigid layer under the
considered surface soil finite layer. Another method that analyzes
the soil under plates is the finite layer method [14] in which the
soil is divided into several horizontal layers.

Plates resting on elastic half space are studied with the finite
element method and the boundary element method besides
presence of some analytical solutions. This is considering thin
and thick plate theories. The application of the BEM to plate
bending problems modeled using the thin plate theory was
introduced by Bézine [15] and Stern [16]. Vander Weeën [17]
derived a BEM for plate bending problems based on the shear
deformable plate theory according to Reissner [18]. In the last 20
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years, the formulation of Vander Weeën [17] became a standard
formulation among researchers due to its stability and versatility.
The edited book of Aliabadi [19] contained several advanced
developments in BEM for plate bending problems using Vander
Weeën formulation. Rashed [20] extended the formulation of
Vander Weeën [17] to solve practical rafts on Winkler foundation.

Several researches have discussed the analysis of plates on
elastic half space. Selvadurai [11], Bowels [13], and Das [21]
proposed different methods of elastic analysis of soil–plate inter-
action. Hemsley [22] proposed an elastic solution for axisymme-
trically loaded circular plate with free and clamped edges on
Winkler springs and on a half-space. Chen and Peng [23] demon-
strated a finite element computation of plates on elastic half
space for various base-models. Timoshenko and Goddier [24] also
discussed few methods for soil–plate analysis based on the theory
of elasticity. Wang et al. [25] used bending of plates on an elastic
half-space analyzed by isoprametric finite elements. Wardle and
Fraser [26] carried out a finite element analysis of a plate on a
layered cross-anisotropic elastic half space. They also discussed a
numerical analysis of rectangular plates on layered elastic half
space in Ref. [27]. Ta and Small [14] carried out an analysis
of plates modeled by FEM on finite layered half space with
full analysis and another analysis uses some approximations.
Stavridis [28] proposed a simplified analysis of layered soil-
structure interaction. Wang et al. [12] provided an analysis of
rectangular thick plates on an elastic half space using Ritz method.
Wang et al. [29] demonstrated a plate on layered elastic half space
analyzed by a semi-analytical and semi-numerical method.

Considering the boundary element modeling for plates on
elastic half space, Syngellakis and Bai [30] discussed the applica-
tion of the boundary element method to thin plate on the
Boussinesq half space. Xiao [31] analyzed thick plates on elastic
half space using special form of the indirect boundary integral
formulation where in his analysis; results are obtained in terms of
two Hu functions [32] with no reference to physical variables.
The formulation of Xiao [31] produces hyper-singular kernels in
the integral equations. Therefore, in Ref. [31], the collocation
points are placed outside the boundary together with using
constant elements to avoid hyper-singular integrals. This leads
to limit the application of the method presented in Ref. [31] to
small problems of no practical use.

This paper presents a new practical technique of using the
Boundary Element Method (BEM) to solve plates on elastic half
space. The considered BEM is based on the formulation of Vander
Weeën [17] for the shear deformable plate bending theory.
The considered EHS is the infinite EHS of Boussinesq–Mindlin or
the finite EHS (with rigid end layer) of Steinbrenner. The multi-
layered EHS is also considered. In the present formulation, the soil
stiffness matrix is computed. Hence, this stiffness matrix is
directly incorporated inside the developed BEM.

Several numerical examples are presented and results are
compared against previously published analytical and numerical
methods to validate the present formulation.

2. Stiffness matrix for multi-layered elastic half space

In this section, the stiffness matrix of the elastic half space is
formed and modified to be ready to be fit into the proposed BEM
formulation in the next section.

2.1. Elasticity solutions

In this section, elastic solutions of Boussinesq, Mindlin and
Steinbrenner are reviewed. The EHS boundary (surface under the
plate) is divided into Nc area segments at which the displacement

is required to be computed in any segment due to loading at the
origin. The following sub-sections compute the flexibility matrix
of the overall EHS divisions.

2.1.1. Bousinessq solution

The displacement w X,Yð Þ of a point lying on the surface of an
elastic, isotropic, homogenous and infinite thickness half space
due to a concentrated load P acting at the origin (0, 0) is [11]

w X,Yð Þ ¼
1�vð ÞP

2pGr
ð1Þ

in which G¼ E=2 1þvð Þ is the shear modulus, E is the modulus of
elasticity, v is the Poisson’s ratio and

r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
þY2

q
:

In order to avoid singularity under loading when computing
w 0,0ð Þ, the concentrated loading is replaced by equivalent pres-
sure of intensity q over circular area of radius a [11], to give

w 0,0ð Þ ¼
1�vð Þqa

G
ð2Þ

2.1.2. Mindlin solution

Similar to Bousinessq solution, Mindlin solution considers
similar equation to Eq. (1) for the surface displacement w X,Yð Þ at
distance r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
þY2

p
. However, displacement under load is

computed by integrating the equivalent uniform load over rec-
tangular area (B� L) to give [12]

w 0,0ð Þ ¼
P

8pG 1�vð ÞB
3�4vð Þ bln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb2

q
b

0
@
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@

1
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0
@
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@
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@

1
A
1
A ð3Þ

in which b¼B/L.
It has to be noted that, displacement values computed from both

Boussinesq and Mindlin solutions could be multiplied by a factor to
account for the presence of rigid layer at limited depths [21].

2.1.3. Steinbrenner solution

It considers the displacement w of a rectangular loaded area of
dimension B� L on the surface of elastic half space having a finite
soil layer underneath the plate. Such a soil layer is above a rigid
layer. The displacement is computed based on theory of elasticity
as follow [13]:

w¼ qB
1�v2

E
m I1þ

1�2v

1�v
I2

� �
IF ð4Þ

where q is the equivalent uniform applied stress over the loaded
area (B� L), E is the modulus of elasticity and v is the Poisson’s
ratio. I1 and I2 are influence factors computed using equations
given by Steinbrenner [13] as follow:

I1 ¼
1

p Mln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
þ1

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
þN2

p
M 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
þN2
þ1

p� � þ ln
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
þ1

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þN2

p
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
þN2
þ1

p
0
@

1
A ð5Þ

I2 ¼
N

2p tan�1 M

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
þN2
þ1

p
 !

ð6Þ

in which M¼L/B, N¼H/B and H is the height of the soil layer above
the rigid layer. IF is the influence factor depending on plate
embedment depth D, in this work, IF is taken to be¼1 as all
considered plates in this paper are located on the EHS surface.
m is the number of corners contributing to displacement w. At the
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