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a b s t r a c t

The current distribution over the cross section of a planar circular coil is calculated by a Fredholm

integral equation technique. An external applied current source is driving the current. The integral

equation technique is applied over a two-dimensional cross section of the coil while considering

infinitesimally thin windings. The coil windings are divided into equally sized one-dimensional

elements. The resulting algebraic system is solved numerically. For low frequencies, the current

distribution follows the 1/r behavior. As the frequency increases, the influence of the proximity effect is

taken into account. Different cases are studied examining the intensity of these effects on the current

distribution as the number of turns, the width of the windings, and the spacing between the turns are

varying.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Spiral planar inductors are widely used in amplifiers, oscilla-
tors, switches etc with varying shape and size. These inductors
are made from thin metallic layers deposited on printed circuit
boards, ceramic substrate or on silicon integrated circuits. In
Fig. 1, we can see different types of spiral coils such as square
octagonal and circular coils. Various techniques are used to
calculate their inductance, resistance and quality factor [1]. On
the other hand, little is mentioned about the current density
distribution in planar spiral inductors.

At the same time, different approaches can be found in the
literature for estimating the current density distribution in parallel
conductors. These techniques consider integral [2,3] or apply a more
empirical/engineering approach using partial inductance–resistance
matrices [4].

In addition, integral equations are reported to have been used in
order to solve vector magnetic potential and current distribution
problems in linear or axi-symmetrical strips. Integral representa-
tions have been used in [5,6] to solve the current distributions
problems on various axi-symmetrical problems.

Similar problems have also been attacked by Kroot et al. with a
particular application to magnetic resonance imaging gradient
coils [3,7–9]. In the above mentioned researches, Legendre poly-
nomials are used as a basis function for the solutions of the

integral equations. In [7–9] the Galerkin method is applied.
Moreover, the importance of proximity and edge effects, as well
as the low-frequency non-uniformity of the current distribution
in the case of axy-symmetrical coils have been underlined.

In the present paper, the proposed method is used to calculate
the current density in the cross-sectional area of a planar circular
coil. The thickness of the coil is considered infinitesimally small
compared to the radii of the windings and to the skin depth for
the frequencies under consideration. As the frequency increases,
the proposed method loses apparently its validity as the skin
depth becomes comparable to the thickness of the coil. For the
range of frequencies used in this study though, the assumption
that the skin depth is bigger than the thickness of the coil, is
considered valid.

This semi-analytical method followed in this very research
introduces a Fredholm integral equation technique applied pre-
viously in [10,11]. The solutions provided are in the form of
multiple integrals of modified Bessel functions. The system of
equations has been applied on a one-dimensional cross section
of the coil as the thickness is neglected. The Gauss elimination
method has been used to solve the algebraic system. The results
confirm the non-uniform 1/r behavior of the current distribution
for low frequencies. For higher frequencies, the proximity effect
becomes prominent and the current distribution is heavily altered.

The main purpose of the ongoing investigation is to find out
the temperature distribution of spiral inductors with micrometer
dimensions in an integrated circuit. It was observed experimentally
using infrared thermography that the temperature increase is not
negligible even when the total power was in the mW range [12].
This numerical model had been developed in order to be used in a
2-dimensional heat transfer model of a circular–spiral-shaped heat
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source. From the calculated current density it is quite straightfor-
ward to obtain the spatial distribution of the joule losses.

2. Integral equation

A circular planar inductor is assumed. It consists of N turns
which are concentric. In Fig. 2, we can see a layout of a 2-turn
circular planar coil. The inductor is triggered by an imposed
source current I(n), which is the complex value of the source
current on turn (n), with n¼ 1, . . . ,N. The total prescribed current
of each turn is equal to I0. The introduced signal generates a
magnetic field which in turn introduces eddy currents. These
eddy currents alter the current distribution and therefore the
signal introduced and the magnetic field. The turns of the inductor
are considered to be very thin compared to other dimensions of
the coil, and thus the current density and the related electric field
are in the xy-plane. The magnetic field caused by the imposed
current, and also by the eddy currents, is directed along the z-axis
for points in the xy-plane.

The current flows in circles sharing the same center and thus
the problem is circular symmetric and, the current density can be
described as

J
!
¼ JðrÞ uy

�!
, ð1Þ

where r, y are the polar coordinates (Fig. 2). Remark that all
quantities are in phasor notation unless otherwise mentioned.

The equation describing the function of eddy currents is

,� E
!
¼�jo B

!
¼�joð,� A

!
Þ, ð2Þ

where o represents the angular frequency, A
!

is the vector
potential, E

!
is the electric field, and B

!
is the magnetic induction.

From the previous equation one can easily get by integration:

E
!
¼�jo A

!
þ,f, ð3Þ

where ,f is an integration constant, and f is the scalar potential
function related to the imposed electrical field E0

�!
, caused by the

imposed currents I(n):

E0
�!
¼,f: ð4Þ

Due to circular symmetry the potential related function f can
only depend on r. It is also known that the imposed current

density is related to the electric field caused by that signal as

JðnÞ0

�!
ðrÞ ¼ sEðnÞ0

�!
ðrÞ, ð5Þ

where n is the number of the turn under investigation, JðnÞ0

�!
ðrÞ is

the imposed current density along the cross section of the turn n,

EðnÞ0

�!
ðrÞ is the induced electric field at the same point r

!
on the turn

(n), and s is the electric conductivity of the coil.
In addition, the voltage drop along one turn, at a distance r

from the center of the coil in the DC case, is described by the
following equation:

V ðnÞðrÞ ¼

I
r

EðnÞ0

�!
ðrÞdl
!
¼ EðnÞ0 2pr¼ CðnÞ: ð6Þ

The voltage drop over each turn (n) remains constant and is equal
to CðnÞ as the radius r varies between Rn and R0n. Rn and R0n represent
each turn’s inner and outer radius, respectively. Furthermore, the
length of each turn’s arc is considered equal to the perimeter of the
circle on which it is drawn.

Although V ðnÞðrÞ is a complex representation of a sinusoidal
varying quantity (time dependent) for frequencies different than
zero, Eq. (6) remains valid as in the DC case, because o does not
appear in (6).

Combining the previous Eqs. (5) and (6), one can get the
following relation:

JðnÞ0

�!
ðrÞ ¼

sCðnÞ

2pr
uy
�!

: ð7Þ

Besides, the spatial distribution of the imposed current for frequencies
different than zero (f a0) is the same as for the zero-frequency case.

The imposed currents IðnÞ are equal to

IðnÞ ¼ d

Z R0n

Rn

JðnÞ0

�!
dr
!
¼ dsCðnÞ

Z R0n

Rn

1

2pr
dr)

CðnÞ ¼
2pIðnÞ

ds ln R0n
Rn

, ð8Þ

where n is the number of the turn into consideration, Rn is the
inner radius of the turn and R0n is the outer radius of the turn and d

the thickness of the coil assumed to be much smaller than the
radius. It follows that the imposed electrical field is given by the

Fig. 1. Planar inductors - (a) square, (b) exagonal, (c) octagonal, and (d) spiral.

Fig. 2. Circular planar coil layout.
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