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a b s t r a c t

We investigate numerical solution of the one dimensional nonlinear Klein–Gordon and two-dimensional
sine-Gordon equations by meshless method of lines using radial basis functions. Results are compared
with some earlier work showing the efficiency of the applied method. Salient feature of this method
is that it does not require a mesh in the problem domain. Multiquadric and Gaussian are used as radial
basis functions, which use a shape parameter. Choice of the shape parameter is still an open problem. We
explore optimal value of the shape parameter without applying any extra treatment. For multiquadric,
eigenvalue stability is studied without enforcing the boundary conditions whereas for Gaussian, the
boundary conditions are enforced.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, we propose the meshless method of lines (MMOL) for
the numerical solution of one-dimensional nonlinear Klein–Gordon
(KG) and two-dimensional sine-Gordon (SG) equations. The method of
lines (MOL) is a powerful numerical technique which approximates a
time-dependent partial differential equation (PDE) in two steps. The
spatial derivatives are approximated by finite difference (FD), finite
element (FE) or any other algebraic approximations such as radial
basis functions (RBFs), etc. Thus, the given PDE is reduced to a system
of ordinary differential equations (ODEs). Any robust ODE solver can
be invoked to solve the system of ODEs. A great deal of research has
been devoted to MOL [1–4]. Several authors have used MOL for the
numerical solution of time-dependent PDEs. These include nonlinear
Burgers'-type equations [5], time-dependent nonlinear coupled PDEs
[6], generalized Kuramoto–Sivashinsky equation [7], one-dimensional
wave equation subject to an integral conservation condition [8], two-
dimensional sine-Gordon equation [9], one-dimensional extended
Boussinesq equation [4], nonlinear dispersive waves [3], nonlinear
inverse heat conduction problems [10], Korteweg–de Vries (KdV)
equation [2,11], parabolic inverse problem [12]. For a comprehensive
list of applications see [8].

The meshless methods have an edge over the mesh-based
numerical methods. In the present work, for the numerical solution

of KG equation we use RBFs, Multiquadric (MQ) ðϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
Þ and

Gaussian (GA) ðϕðrÞ ¼ expð�cr2ÞÞ, where c is the shape parameter and
plays a crucial role in the stability and convergence. Several authors
have worked on finding the optimal shape parameter, these include
Hardy [13], Foley [14], Carlson and Foley [15], Kansa and Carlson [16],
Golberg et al. [17], Rippa [18], Kansa and Hon [19], Driscoll and
Fornberg, [20], Fornberg et al. [21,22], Fornberg and Wright [23], and
Larsson and Fornberg [24]. For more details, see [25] and references
therein. Eigenvalue stability for explicit time integration schemes was
investigated by Platte and Driscoll [26] and Sarra [27]. Platte and
Driscoll showed that eigenvalue stability is possible in the absence of
boundaries. They proved that differentiation matrices for conditionally
positive definite RBFs are stable for periodic domains. They also
showed that for Gaussian RBFs, special node distributions can achieve
stability in 1-D and tensor-product non-periodic domains. Sarra
investigated accuracy and eigenvalue stability of symmetric and
asymmetric RBF collocation methods for hyperbolic initial boundary
value problems in one and two dimensions. Accuracy and conditioning
of RBFs interpolation were discussed by Schaback [28], Kansa and Hon
[19], Fornberg et al. [29], and Platte and Driscoll [30]. Schaback proved
the uncertainty relation between the error and the condition number
of the interpolation matrices. He showed that the error and the
condition number cannot be kept small at the same time. Kansa and
Hon applied several techniques for improving the condition number of
the coefficient matrix and the accuracy. Fornberg et al. and Platte and
Driscoll used boundary treatment techniques to improve the accuracy.
RBFs method was also used for problems like improved Boussinesq
equation [31] and two-dimensional complex Ginzburg–Landau equa-
tion [32]. In the present work, we explore numerically how to choose
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the optimum value of cwithout doing any extra treatment. Eigenvalue
Stability and convergence of the solution of nonlinear KG equation are
discussed in the light of optimum shape parameter. The nonlinear KG
equation is given by

∂2u
∂t2

þ α∇2uþ ψ uð Þ ¼ f x; tð Þ; ð1Þ

where u¼ uðx; tÞ, x¼ ðx; yÞ, α is a known parameter and ψðuÞ is
the nonlinear force. When ψðuÞ ¼ sin ðuÞ, Eq. (1) becomes the sine-
Gordon (SG) equation [33]. We consider the following two cases of
Eq. (1), namely, the one-dimensional nonlinear KG equation and
the two-dimensional SG equation. The one-dimensional nonlinear
KG equation is given by

utt þ αuxx þ βuþ γu2 ¼ f ðx; tÞ; ð2Þ
with initial and boundary conditions

uðx;0Þ ¼ f 1ðxÞ; utðx;0Þ ¼ f 2ðxÞ; a≤x≤b; ð3Þ

uða; tÞ ¼ g1ðtÞ; uðb; tÞ ¼ g2ðtÞ; t40: ð4Þ
In the above equations u¼ uðx; tÞ, and α, β, γ are known parameters.

The two-dimensional sine-Gordon equation is given by

utt ¼ uxx þ uyy� sin ðuÞ ð5Þ

with u¼ uðx; y; tÞ in the region Ω¼ fðx; yÞ : �aoxoa;�boyobg
for t40. We consider the Neumann boundary conditions

ux ¼ 0 for x¼�a and x¼ a; ð6Þ

uy ¼ 0 for y¼�b and y¼ b; ð7Þ

and the initial conditions

uðx; y;0Þ ¼ G1ðx; yÞ for �aoxoa and boyob; ð8Þ

utðx; y;0Þ ¼ G2ðx; yÞ for �aoxoa and boyob: ð9Þ

Table 1
Comparison of results by calculating L1 error norm, corresponding to Example 1, when N¼11, t ¼ 0:0001.

Method t¼0.01 t¼0.02 t¼0.1 t¼0.5 t¼1.0

MQ-RK4 (c¼1.2) 4.74683E�007 8.91396E�007 1.90058E�006 8.16948E�005 3.18899E�004
MQ-Störmer's (c¼0.75) 7.56392E�007 2.02243E�006 2.83297E�005 8.60692E�005 3.94758E�005
GA-RK4 (c¼2.19) 4.86458E�007 9.41260E�007 3.86104E�006 1.26364E�004 7.08585E�004
GA-Störmer's (c¼3.13) 5.35008E�007 1.13417E�006 6.80368E�006 4.62735E�005 4.20490E�004

Table 3
Condition number, spectral radius and the convergence rate for GA with Störmer's method at t¼0.1, corresponding to Example 1.

Spatial convergence rate, c¼130 and δt ¼ 0:0001
N Cnd number ρ L2 L1 L2 Rate L1 Rate

11 3.17937E+000 9.41632E�006 6.06798E�002 1.56509E�001 – –

21 7.64635E+002 3.67005E�005 1.98187E�002 7.38432E�002 1.61436 1.08371
31 5.92834E+006 8.00058E�005 3.39633E�003 1.16738E�002 4.35038 4.54935
41 1.07986E+012 1.36533E�004 3.08964E�004 1.21925E�003 8.33290 7.85280

Time convergence rate, c¼3.13 and N¼11
δt Cnd number ρ L2 L1 L2 Rate L1 Rate

0.0250 4.54948E+011 1.06071E�001 1.26076E�003 1.35825E�003 – –

0.0010 4.54948E+011 1.69714E�004 4.43198E�005 5.08359E�005 1.04013 1.02065
0.0005 4.54948E+011 4.24285E�005 2.21415E�005 2.56513E�005 1.00120 0.98682
0.0001 4.54948E+011 1.69714E�006 5.05455E�006 6.80368E�006 0.91781 0.82459

Table 2
Condition (Cnd) number, spectral radius and the convergence rate for MQ with Störmer's method at t¼0.1, corresponding to Example 1.

Spatial convergence rate, c¼0.18 and δt ¼ 0:0001
N Cnd number ρ L2 L1 L2 Rate L1 Rate

11 8.41983E+003 8.71335E�006 2.63270E�003 7.18462E�003 – –

21 6.56002E+006 3.67844E�005 4.06335E�004 1.50299E�003 2.69580 2.25708
31 3.36727E+009 8.42766E�005 6.94424E�005 2.32983E�004 4.35717 4.59780
41 1.45685E+012 1.51319E�004 1.28915E�005 4.46785E�005 5.85345 5.74062

Time convergence rate, c¼0.75 and N¼11
δt Cnd number ρ L2 L1 L2 Rate L1 Rate

0.0100 1.04474E+010 4.61836E�002 4.46205E�004 5.05989E�004 – –

0.0010 1.04474E+010 4.61836E�004 4.74266E�005 5.54846E�005 0.97351 0.95997
0.0005 1.04474E+010 1.15459E�004 2.60844E�005 4.04354E�005 0.86251 0.45647
0.0001 1.04474E+010 4.61836E�006 1.12216E�005 2.83297E�005 0.52409 0.22107

Table 4
Number of nodes, shape parameter and stable condition number by Störmer's
method when δt ¼ 0:0001 at t¼0.1, corresponding to Example 1.

N MQ GA

c Cnd number c Cnd number

11 0.75 1.04474E+010 3.13 4.54948E+011
21 0.36 2.06733E+011 24.24 2.92252E+012
31 0.24 7.25723E+011 65.12 3.74234E+012
41 0.18 1.45685E+012 121.73 5.84506E+012
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