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a b s t r a c t

This work presents a methodology for identifying inclusions in a conductor domain. The methodology is
based on electrical potential measurements on the external boundary of a conductor body subjected to a
prescribed set of electrical current injections. The boundary of each inclusion is approximated by a
special kind of spline, whose control points have an extra parameter related to the distance between the
control point and the curve. Such special feature allows identification of smooth or sharp inclusions with
the same initial guess. The identification is an inverse problem that, in this work, is solved by the
Levenberg–Marquardt Method. This iterative method tries to locate the minimum of an objective
function, the square of the norm of a residual vector function, given by the differences between electrical
potential measurements and the computed ones. The computation of the electrical potential is called
forward problem and it is solved by an implementation of the direct formulation of the Boundary
Element Method (BEM). The present paper addresses two approaches for computing the derivatives of
the residual function with respect to the minimization parameters, required by the Levenberg–
Marquardt Method. The first one is based on finite differences and the second one is based on the
direct differentiation of the integral equation of the BEM for potential problems. Performance
comparisons of these two approaches are presented, based on numerical experiments of identification
of inclusions with noisy datasets computationally obtained.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The problem treated in this paper consists in identification of
an inclusion of known conductivity in a homogeneous body. This
process is based on electrical potentials measures on the external
boundary of the body, generated by a predefined set of electrical
current injections. This inverse problem is related to the Electrical
Impedance Tomography (EIT) [1,2], which is applied in a large
variety of situations like industrial process control [3,2] and
medical applications. In this latter area of application the techni-
que can be used for tumors identification [4], diagnostic of breast
carcinoma [5,6], mapping of cerebral activity [7], lung ventilation
[8] and cardiac function monitoring [9,10]. The special interest of
using the EIT in medical applications is due to its radiation-free

property, allowing this technique to be used continuously. Other
advantages are its portability and low costs compared with other
common techniques, such as magnetic resonance and computed
tomography. On the other hand, its spacial resolution is lower than
other imaging methods.

In this paper, the inverse problem of reconstructing the con-
ductivity distribution in a 2D domain can be viewed as a data
fitting problem. The aim of the methodology is to find the vector of
geometric parameters that minimizes the misfit between com-
puted and measured boundary potentials. These parameters are
positions of control points of splines describing the boundary of
the inclusion to be determined as shown in Section 3. With this
strategy, the problem can be mathematically described as follows:

χ n ¼ argmin
χ

fFðχ Þg; ð1Þ

F χð Þ ¼ 1
2fðχ ÞT f χð Þ; ð2Þ

fðχ Þ ¼ zðχ Þ�z; ð3Þ
where χ∈Rn is the vector of optimization parameters, Fðχ Þ : Rn-R

is the objective function, f : Rn-Rm is the residual vector function,
z : Rn-Rm is the vector of computed potential values, z∈Rm is the
vector of measured potentials, m is the number of potential
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measures and n is the number of optimization variables. As z is a
nonlinear function of χ , Eqs. (1)–(3) define a nonlinear least-
square problem.

In order to solve the optimization problem presented above,
the well known method Levenberg–Marquardt, described for
instance in [11], was chosen. This method is considered one of the
best to solve this kind of problems [12,13] and requires the
computation of derivatives of the objective function with respect to
the optimization parameters. The information provided by these
derivatives is used to improve the efficiency of the method, reducing
number of objective function evaluations, when compared with zero
order methods.

In the present paper, two approaches for computing the
derivatives are addressed. The first is the usual based on finite
differences and the second one is based on the direct differentia-
tion of the integral equation of the BEM for potential problems.

Next section presents the Governing Equation of the forward
problem, used to compute the boundary potential values for a
given conductivity distribution. Then, Section 3 defines the para-
meterization used and Section 4 briefly describes the algorithm
used to solve the inverse problem. Both approaches for computing
the derivatives are presented in Section 5. In Section 6, numerical
experiments for identification of inclusions are presented. In this
section, the performance of the two approaches for computing
derivatives is compared and the influence of noisy datasets is
assessed. Finally, discussions and conclusions about the metho-
dology are presented in Section 7.

2. Governing equation

As usual, the inverse problem here defined is solved iteratively.
At each iteration the vector χ is updated, demanding a
new solution of the forward problem in order to obtain the
potentials at the boundary needed for the evaluation of the
objective function.

Although electromagnetic phenomena are governed by Max-
well's equations, in the problem here treated it is assumed that the
frequency is maintained low, hence the problem can be conveni-
ently approximated by Laplace's equation [14].

Here, we consider a domain composed by a main conductor
material with inclusions of different conductivities such that it can
be divided in homogeneous subdomains as shown in (Fig. 1). The
potential value u at point x of the k-th subdomain must satisfy

∇2ukðxÞ ¼ 0; x∈Ωk; ð4Þ

where Ωk represents the k-th subdomain. The main subregion is
represented by Ω0 and the inclusions are represented by Ωk, with
k40.

The boundary and the interface conditions are

u0ðxÞ ¼ 0; x∈ΓU
0 ; ð5Þ

s0
∂u0

∂n
¼ J xð Þ; x∈ΓJ

0; ð6Þ

u0ðxÞ ¼ ukðxÞ; x∈Γk; ð7Þ

s0
∂u0

∂n
xð Þ ¼ �sk

∂uk

∂n
xð Þ; x∈Γk; ð8Þ

where sk is the conductivity of k-th subdomain, n is the outward
normal to the boundaries of Ω0, ∂uk=∂n¼∇uk � n is the normal
derivative of the potential, Γ0 is the external boundary of the
domain, Γk is the interface between the subdomains Ω0 and Ωk

and JðxÞ is the current density prescribed.
For each current injection case, two electrodes (ΓJ

0) are used,
one to inject and the other to drain electrical current. Here we
adopt JðxÞ ¼ 1 and JðxÞ ¼�1 at these electrodes. A third electrode
(ΓU

0 ), used as potential reference, has null potential prescribed. The
rest of the external boundary (ΓJ

0) has null current density prescribed.
The Boundary Element Method (BEM) was chosen to solve the

above described forward problem mainly due to the simplicity in
mesh generation, that is demanded at each iteration. Additionally,
there is no need of computation of internal unknowns, since the
objective function depends only on the potential values at the
external boundary of the body.

BEM is nowadays a standard numerical method for the solution
of the kind of problem here treated and details of its derivation
can be found elsewhere [15]. In order to provide details of the
present implementation a brief summary is presented below. The
adopted formulation is based on the following integral equation:

cðξÞuðξÞ þ
Z
Γ
pnðξ; xÞuðξ; xÞ dΓðxÞ ¼

Z
Γ
unðξ; xÞpðξ;xÞ dΓðxÞ; ð9Þ

where ξ is the collocation point, Γ is the boundary of the
subdomain, u is the electrical potential, p is its normal derivative,
un and pn are the fundamental solutions for the potential and its
normal derivative, respectively and cðξÞ is a function of the
boundary shape, whose value is 0 if ξ is outside of the domain,
1 if ξ∈Ω and β=2π if ξ∈Γ. The parameter β is the angle between the
left and right tangents at the collocation point ξ.

In order to obtain a numerical solution for Eq. (9), the boundary
of the body is discretized. The external boundary is divided in N0

elements and each inclusion boundary in Nk elements. The
element here adopted has a linear geometry and the values of
the electrical potential and its normal derivative are constants
along each element. Therefore, each boundary element has two
nodes for geometric definition and a centered node for the
potential and flux approximation. In this case, the parameter β¼ π
and then cðξÞ ¼ 0:5 if ξ∈Γ. Thus, the discretized form of Eq. (9)
for each subdomain k allows evaluating the potential at each
functional node as follows:

cðξiÞuðξiÞ þ ∑
Nk

j ¼ 1
uj

Z
Γj

pn dΓJ ¼ ∑
Nk

j ¼ 1
pj

Z
Γj

un dΓJ ; ð10Þ

where uj and pj represent the potential and its derivative at the
j-th node, the regular integrals are computed numerically by the
usual Gauss Quadrature scheme and the singular ones are computed
analytically.

The application of Eq. (10) for each subdomain Ωk, in addition
to the boundary, Eqs. (5) and (6), and the compatibility conditions,
Eqs. (7) and (8) for the potential and flux at the functional nodes of
the interface elements at Γk, yields a linear system of algebraic

Fig. 1. An example of heterogeneous domain divided in three homogeneous
subdomains. A scheme of the boundary conditions of the Laplace's problem is
presented.
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