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a b s t r a c t

In this paper the inverse problem of electrical impedance tomography (EIT) in a three dimensional
environment is considered. In this technique, electrodes are placed on the external boundary of the body
and electrical current is injected by sequentially activating pairs of them while the corresponding
potentials are measured. Usually such measures are used in order to solve the nonlinear inverse problem
of achieving a two-dimensional image of the conductivity distribution over the cross section of the body.
In the problem studied here the goal is to determine the size and position of an existing cavity within
a homogeneous medium. The geometrical parameters that describe the cavities are the unknowns of the
resulting 3D inverse problem, which is solved by the Levenberg–Marquardt method. Two shapes of
geometrical cavities are here considered: spherical and spheroidal. Due to its accuracy and simplicity of
mesh generation, the Boundary Element Method (BEM) is used in the solution of the direct problem.
In order to evaluate the proposed strategy, numerical experiments are presented varying the position
and the shape of the cavity and also the injection-measure protocol used. Since measured data are
not currently available, boundary potential measurements have been obtained computationally also
using BEM. The sensitivity of the present method in the presence of measurement noise has also been
estimated through numerical experiments.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The present paper addresses the problem of identification of a
cavity, in a conductive domain, starting from the measurements
of electrical potential on electrodes placed over the external
boundary of the body. The problem is dealt with by first finding
the required geometrical parameters of the cavity to be identified
and then trying to find their actual values. This is done by the
minimization of the misfit between the electrical potential bound-
ary measurements and the corresponding values obtained with
the numerical model used. These three-dimensional potential
distributions are generated by a series of current injections
through electrodes placed on the boundary of the body, on the
3-D domain Ω. The numerical values of the electrical potential

u are obtained by solving the Laplace equation

∇2u¼ 0 ð1Þ
using a direct formulation of the Boundary Element Method (BEM).
This leads to a nonlinear least-squares problem, with the geome-
trical parameters as unknowns.

This kind of problem can arise, for instance, in monitoring flow
fields in industrial processes [1].

Another problem related to the one here investigated comes
from the electrical impedance tomography (EIT) [2]. In the EIT
inverse problem, based on the same kind of data, the aim is
to compute the distribution of electrical conductivity within a
domain. EIT is used in a wide range of applications. In medical
imaging this technique is used, for instance, to monitor pulmonar
function [3] and is a promise for detecting and characterizing
tumors in the breast [4]. In geophysical community this tech-
nique is known as electrical resistivity tomography (ERT) and is a
common tool for aquifer characterization [5,6]. Recently, an
experimental study [7] has shown that EIT can become a feasible
modality for non-destructive evaluation of concrete. Numerical
solutions of this problem usually decompose the domain in small
sub-domains whose conductivities are the unknowns of the
inverse problem. Within this approach the Finite Element Method
is the usual choice for the direct problem solution. In this case the
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number of unknowns is much larger than the number of restric-
tions (measurements) leading to a rank-deficient ill-posed pro-
blem. Hence, the approach demands the usage of regularization
methods to find acceptable solutions.

If there is some knowledge of the structure of the searched
conductivity distribution, a similar approach to the strategy used
here can be used in the EIT problem. In the case of sub-domains
with different conductivities, geometrical parameterizations can
be used to define internal boundaries. This can be viewed as an
introduction of a priori information in order to regularize the
problem and significantly reduces the number of unknowns of
the inverse problem. This kind of methodology has already been
applied in a two-dimensional numerical setup to the problem of
heart function monitoring [8].

In order to assess the limitations of the proposed approach
for 3-D problems, the application of one cavity identification is
studied in the present work. Two kinds of shape parameterizations
are adopted for the cavities, respectively with four and seven
parameters: spherical and spheroidal.

Also two different protocols of current injection are compared
when used to solve the problem of identifying a cavity in a set of
different locations within the domain. The numerical results
obtained are compared in order to identify the most adequate. In
order to solve the nonlinear least-squares problem two strategies
are compared. The first one is a classical routine of the Levenberg–
Marquardt method and the second is a generalized secant version
of this algorithm. In this kind of approach here adopted, the
evaluation of the function to be minimized is the most time
consuming part of the solution and this second version aims to
reduce the number of evaluations needed to achieve the solution.

As there were no real boundary potential data available from
experiments, numerical generated data is used instead. In order to
assess the influence of noise in the measurements, disturbances in
the synthetic data are added and their influence in the numerical
inversion results are reported.

2. Inverse problem definition

The aim of the present strategy is to find the vector containing
these geometrical parameters tn corresponding to the model
results that best fit the measured data. Mathematically this can
be written as the minimization of a function f:

f ¼ 1
2RðtÞTR tð Þ ð2Þ

with

RðtÞ ¼ VðtÞ�V ð3Þ

where f is the objective function (f : Rn-R), RðtÞ is the residual
function (R : Rn-Rm), V is a vector with the m electrical potential
measures and VðtÞ stores the computed potentials when a set of n
geometrical parameters are assigned.

The number of possible independent measures that can be
used to study the problem depends on the number of electrodes
used in the idealized experimental setup and on the current
injection pattern used to induce the potential measures. Although,
in principle, a general pattern of current injection could be used,
due to hardware simplicity, most of the EIT equipments use
a single source for current injection [2]. This implies that only
two electrodes are used in each injection complemented by
another one for potential reference. Also, the utilization of 16
electrodes is a common practice in EIT procedures, hence this was
the number of electrodes assumed in the present work. These are
numbered from 1 to 8 in the lower plane and from 9 to 16 in the
upper plane as depicted in Fig. 1.

In two dimensional problems two patterns are commonly used
[9]: the adjacent and the opposite patterns, where two consecu-
tive and diametrically opposed electrodes are respectively used for
the current injections. In the three dimensional case the definition
of the more appropriate pattern is still under investigation [10,11].
The two patterns described in Table 1 have been used in the
present work. The first one is composed of three sets of injections
in accordance with the opposite pattern. In the first set, the four
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Fig. 1. Mesh of the exterior and interior boundaries (above); modelled electrodes
for current injection and potential measurements.
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