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a b s t r a c t

A fully implicit least-squares-based meshfree method is used to solve the governing equations of
viscoelastic fluid flow. Here, pressure is connected to the continuity equation by an artificial
compressibility technique. A radial point interpolation method is used to construct the meshfree shape
functions. The method is used to solve two benchmark problems. Thanks to the flexibility of meshfree
methods in domain discretization, a simple node enrichment strategy is used to discrete the problem
domain more purposefully. It is shown that the introduced enrichment process have a positive effect on
the accuracy of the results.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There are numerous investigations about the numerical simu-
lation of viscoelastic fluid flow. Townsend used a finite difference
technique to simulate the flow of viscoelastic fluid past stationary
and rotating cylinders [1]. Viriyayuthakorn and Caswell simulated
the flow of viscoelastic fluid using finite element method [2].
Darwish and Whiteman presented a staggered-grid, finite-volume
method for the numerical simulation of isothermal viscoelastic
liquids [3]. A comprehensive review in the field of numerical
simulation of the viscoelastic fluid flow is performed by Owens
and Timothy [4]. Most of the studies in this field are carried out by
finite element and finite volume methods. These methods require
mesh or grid to discretize domain of a problem. The subdivision of
the domain into such components is laborious and difficult
necessitating complex mesh or grid generation. Further, if adap-
tivity processes are used, generally large areas of the problem have
to be remeshed [5]. The main feature of a meshfree method is its
ability to more easily discretize the domain of a problem using
some scattered nodes instead of elements or grids. This ability is a
promising approach to perform an effective refinement procedure.
In the present study, a least-squares-based meshfree technique

referred to as Collocated Discrete Least Squares (CDLS), that was
presented in [6], is used to solve the governing equations. A Radial
Point Interpolation Method (RPIM) using Multi-Quadratic Radial
Basis Functions (MQ-RBF) is used to construct meshfree shape
functions. By this kind of function approximation we suppose that
the exponential behavior of the stresses can be captured better in
comparison with polynomial basis functions usually used in
conventional numerical methods [4]. Here, the equations are
considered to be solved implicitly. It means that the evolution of
the pressure, velocity and stresses are computed simultaneously at
each time step. To connect the pressure to the continuity equation,
conventional artificial compressibility technique is used. Although
the problem is assumed to be steady state, the governing equa-
tions are solved in time to the point that a steady-state solution is
obtained. In this paper, a node enrichment strategy is used to
discretize the domain of the problem according to some informa-
tion from a prior solution. Some researchers have used adaptive
refinement techniques to obtain more accurate solution in the
simulation of viscoelastic fluid flow (for example [7,8]). However
most of the efforts have been done using finite element and other
mesh-based methods and authors believe that any adaptive
process (including node enrichment) can be performed more
simply in a meshfree technique. Adding nodes is simpler and
more flexible than adding elements or grids to the computational
domain of the problem. To assess the accuracy, the presented
procedure is tested for two problems. In the first problem, an
Oldroyd-B fluid creeping flow around a confined cylinder with a
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blockage ratio equal to 0.5 which is considered as a benchmark in
computational rheology. In order to show how the method works
at high Weissenberg numbers, in the second problem, the viscoe-
lastic lid driven cavity flow is solved. In the proposed scheme, at
each Weissenberg number, first a rather sparse nodal distribution
is used for the solution, then using an error indicator, the positions
of new nodes are obtained and finally the problem is solved using
this enriched nodal distribution.

2. Governing equations

The governing equations for a two dimensional (x–y plane),
steady and incompressible creeping flow of an Oldroyd-B fluid [9]
in Cartesian coordinates is given by
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where u; v; p and ηs are velocity components in the x and y
directions, pressure and solvent viscosity respectively. τxx; τxy; τxy
are stress tensor components. ηp and λ are the polymer viscosity
and relaxation time, respectively. Usually an additional parameter
is defined to show the magnitude of solvent viscosity with respect
to the total viscosity. It is defined by

β¼ ηs
ηsþηp

The relevant non-dimensional quantity is the Weissenberg
number, defined as

Wi¼ λU
R

where U and R are characteristic velocity and characteristic length,
respectively.

3. CDLS method

Consider the following differential equation:

LðuÞ ¼ f inΩ ð7Þ

BðuÞ ¼ g on Γt ; ð8Þ

u¼ u on Γu; ð9Þ
where u is the unknown function. L and B are differential
operators defined on the problem domain Ω and its Neumann
boundary Γt . Γu represents the Dirichlet boundaries with a
prescribed value of u; and f is the source term in the domain of
the problem. The idea behind the least squares method is to find a
solution that minimizes the residuals arising from the approxima-
tion. In CDLS, the domain of the problem is discretized using two
sets of nodes named field nodes and collocation points. As shown

in Fig. 1, the problem domain and its boundaries are discretized by
field nodes and collocation points. Assume np is the number of the
field nodes in the domain and on the boundaries. Besides the field
nodes, the collocation points are used in the problem domain and
on its boundaries. In this methodology, one collocation point has
to be placed in each field node, as shown in Fig. 1. The approxi-
mated value of the function u at a collocation point k with
coordinate xk, can be obtained through the following interpola-
tion:

uðxkÞ ¼ ∑
i ¼ 1n

NiðXkÞui; ð10Þ

where ui is the value of the unknown function at the ith field node.
n is the number of field nodes that the kth collocation point with
coordinate Xk, has in its domain. This idea of compact support is
shown in Fig. 2. To set up such a domain for each collocation point,
a radius ds is defined so that a specific number of field nodes are
placed into its support domain. In Eq. (10), NiðXkÞ is the value of
the shape function of the ith node at the kth collocation point that
will be defined later. In this paper, first the number of nodes to
the support collocation points is defined as n. Then, for each

Fig. 1. The domain discretized by field nodes (O) and collocation points (þ).

Fig. 2. Compact support of the kth collocation.

Fig. 3. Computational domain of the problem.
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