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a b s t r a c t

The bending of simply supported composite plates is analyzed using a direct collocation meshless
numerical method. In order to optimize node distribution the Direct MultiSearch (DMS) for multi-
objective optimization method is applied. In addition, the method optimizes the shape parameter in
radial basis functions. The optimization algorithm was able to find good solutions for a large variety of
nodes distribution.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper the Direct MultiSearch (DMS) for multiobjective
optimization [1] is applied to the numerical modeling of compo-
site plates in bending. A meshless numerical method is used
(collocation with radial basis functions), with a third order shear
deformation theory. In order to apply the numerical method a grid
of N node centers is defined. The size of the matrix is directly
related to the number of nodes (centers) in a grid. The objective in
the optimization algorithm is to reduce the number of center
nodes without compromising the accuracy of solutions. Since
these can be conflicting objectives, a multiobjective optimization
technique is used. The derivative-free solver DMS is applied to
compute the Pareto front. The latter allows us to find a set of
solutions also known as Pareto solutions. The set of Pareto
solutions contains solutions with a wide range of errors and
number of centers in a grid, allowing for the user to choose from
that set of solutions a particular solution with a given number of
nodes or a given error. Errors are defined by a residual r¼ Pu�rhs.
In order to assess the accuracy of optimized solutions, solutions
are interpolated in a regular node grid uniformly distributed over
the domain and compared with analytical solutions.

In the collocation with radial basis function scheme it is
assumed that any function ρ may be written as a combination of
N continuously differentiable basis functions g:

ρðxÞ ¼ ∑
N

j ¼ 1
χ jgjðx�xj; ϵÞ ð1Þ

where gj depends on a distance d between N grid nodes with
coordinates x, xj is a node center and ϵ is a shape parameter. The
shape parameter, sometimes referred as a ‘fine tuner’, is a non-
zero input parameter defined by the user. The user defined shape
parameter is a positive constant that may cause accuracy issues
[2–5]. In this paper radial basis functions are used with Kansa's
unsymmetrical collocation method [2,3]. This method produces
dense, unsymmetrical, ill-conditioned matrices. High accuracy can
be obtained if an adequate shape parameter is chosen.

Node distribution is also an important factor to influence the
accuracy of solutions. Michelli demonstrated that multiquadric
surface interpolation is always solvable, for distinct data sets [6].
Although any grid may be used, experience shows that different
node distributions produce different results. Therefore, a given
global error can be obtained with a different number of nodes and
positions.

Some optimization techniques have been proposed to choose a
good shape parameter. Rippa and Wang used a cross validation
technique for shape parameter optimization in multiquadric
interpolation [7,8]. The concept was extended by Roque and
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Ferreira to Kansa's method for solving systems of PDEs [9]. Using a
cross validation technique it is possible to obtain good solutions
for plate bending problems, even with a reduced number of grid
nodes, for regular and irregular node distributions. In order to
optimize node distribution for global collocation method with
radial basis function, some proposed techniques use node adaptive
grid strategies, usually using an error estimate to determine the
node insertion/remotion strategy [10]. Sarra used node adaptive
method for 1D time dependent partial differential equations [11].
Casanova et al. presented domain decomposition technique with a
node adaptive algorithm to solve PDEs [12]. Hon et al. and
Schaback and Wendland used an adaptive greedy algorithm to
optimized node distribution when dealing with large radial basis
functions systems [13,14]. An adaptive technique was also used by
Hon for solving problems with boundary layer [15]. Shanazari and
Hosami used an equi-distribution strategy to adapt node position
for irregular regions [16] and Esmaeilbeigi and Hosseini introduce
a dynamic algorithm to perform a local node adaptive strategy in
nearly singular regions [17]. More recently, Uddin applied Rippa's
algorithm to select a good shape parameter when solving time-
dependent partial differential equations [18]. Iurlaro et al. devel-
oped an energy based approach for selecting a shape parameter
and solved problems for the static deformation of rectangular,
simply supported plates subjected to a bi-sinusoidal pressure [19].

In [20] the authors used the DMS algorithm to optimize grid
node distribution and the shape parameter in the analysis of
isotropic plates. In order to simplify the problem, node distribution
and shape parameter were optimized independently. Although in
[20] authors show how multiobjective optimization can be used to
optimize plate in bending problems, the approach is limited to
systems of differential equations with known analytical solution
since the optimization procedure used the analytical solution in its
formulation.

In the present approach, analytical solutions are not used in the
objective function of the optimization problem, broadening the
class of problems to be solved. The right-hand side (rhs) of the
system is used to define a residual to be minimized. In addition the
method optimizes the shape parameter for each optimized node
distribution. As an example, a composite plate in bending under
sinusoidal load is modeled. The problem of a plate in bending
involves solving a system of partial differential equations with
three distinct variables (w, ϕx and ϕy), corresponding to the plate
vertical displacement, and the two rotations about x- and y-axes,
respectively. The system is of the form Pu¼rhs, where P represents
differential operators, rhs contains external loads and u is the
vector of solutions.

This paper is organized as follows. In Section 2 a review of the
meshless numerical method is made. In Section 3 the third order
shear deformation theory is presented. In Section 3 the DMS
algorithm is developed. Numerical examples are presented in
Section 5.

2. Global collocation for PDE

Consider a boundary problem with domain ΩARn and with an
elliptic differential equation given by

HuðxÞ ¼ sðxÞ; xAΩ�Rn

BuðxÞ ¼ lðxÞ; xA∂Ω�Rn

(
ð2Þ

where H and B are differential operators in domain Ω and in
boundary ∂Ω, respectively. Nodes ðxj; j¼ 1;…;NBÞ and
ðxj; j¼NBþ1;…;NÞ are distributed in the boundary and on the

domain respectively. The solution uðxÞ is approximated by ~u:

~uðxÞ ¼ ∑
N

j ¼ 1
γjgðJx�xj J ; ϵÞ ð3Þ

Inserting operators H and B in Eq. (3) the following equations
are obtained:

~uBðxÞ � ∑
N

j ¼ 1
γjBgðJx�xj J ; ϵÞ ¼ lðxiÞ; i¼ 1;…;NB

~uHðxÞ � ∑
N

j ¼ 1
γjHgðJx�xj J ; ϵÞ ¼ sðxiÞ; i¼NBþ1;…;N

8>>>><
>>>>:

ð4Þ

where lðxiÞ and sðxiÞ are the prescribed values on boundary nodes
and domain nodes, respectively. Solving the previous system in
the order of γ, it is possible to interpolate the solution by using
Eq. (3).

In the present paper, the multiquadric radial basis function is
considered:

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þϵ2

p
ð5Þ

where r is the Euclidean distance between distinct grid nodes and
ϵ is a shape parameter.

For the present problem of a composite plate in bending,
differential operators H and B are derived using the third-order
shear deformation theory (TSDT) [21]. A brief overview of TSDT is
given in Section 3.

3. Third-order shear deformation theory

Composite plates are one of the most significant applications of
composite materials in the industry. Layers are stacked together to
form thin or thick laminates. The problem of a plate in bending is
illustrated in Fig. 1 where a load q is applied at the plate's top
surface. The governing equations that rule the bending of the plate
are developed from an assumed displacement filed. In the present
case, a third-order shear deformation theory for displacements is
assumed. The third-order theory of Reddy (TSDT) is based on the
same assumptions than the classical and first-order plate theories,
except that the assumption of straightness and normality of a
transverse normal after deformation is relaxed by expanding the
displacements ðu; v;wÞ as cubic functions of the thickness coordi-
nate, z. Fig. 2 illustrates the deformation of a transverse normal
(note that for a symmetric plate, u0; v0 ¼ 0 and therefore these
may be removed from Eqs. (7)–(9)). The TSDT, for a symmetric
plate, gives origin to a set of 3 partial differential equations with
respective boundary equations.

The third order theory of Reddy (TSDT) for plates has been used
many times in the study of composite plates. In this section, we

h 0

q(x,y)

Fig. 1. Plate in bending problem.
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