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a b s t r a c t

An ultra-accurate hybrid smoothed finite element method (HS-FEM) is presented for the analysis of
piezoelectric structures, in which the electrostatic equations governing piezoelectric problem are solved
numerically with simplest triangular elements in 2D and tetrahedral elements in 3D. In the present
method, the strain field is assumed to be the weighted average between compatible strains from finite
element method (FEM) and smoothed strains from node-based smoothed finite element method (NS-
FEM). Numerical results demonstrate that the proposed method possesses a novel bound solution in
terms of strain energy and eigenfrequencies, which is very important for safety and reliability
assessments of piezoelectric structural properties. In addition, the numerical results obtained from
HS-FEM are much more accurate than the standard finite element method using the same of nodes.
Furthermore, the computational efficiency of HS-FEM is much better than the FEM.

Crown Copyright & 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Smart structures and materials have experienced tremendous
growth over the past decade in the field, and they have been
widely used in various applications such as sensors, actuators,
transducers or active damping devices with the control systems.
These applications are not only available in micro–electro-
mechanical systems of sub-millimeter length scales but also in
the design of smart electromechanical structures of large scales
[1]. Piezoelectric material is one of such smart material. The
transfers between electrical and mechanical energy is known as
the piezoelectric effects. The direct piezoelectric effect can be seen
when it is deformed to generate charge. On the other hand, the
converse piezoelectric effect can be observed when stress or strain
is produced in piezoelectric material with applied electric field.

Further development of piezoelectric actuators or generators
demands robust, stable and accurate numerical methods. The
analytical solutions are only available for simple case such as the
analysis of smart beams with embedded or surface-distributed
piezoelectric sensors and actuators [2–4]. Currently, the finite

element method (FEM) is probably the most popular numerical
method in the simulation of piezoelectric problem. A 3D finite
element framework is developed by Duan et al. [5] with fully
coupling among the piezoelectric coupled stator, contact interface
and rotor to study the steady state transient performance of
ultrasonic motor. Sze et al. has derived a four-node plane, a
nine-node plane and a four-node axisymmetric stabilized ele-
ments for piezoelectric analysis [6]. Based on the classical plate
theory, Lam and Liu have built up finite element model [7,8] for
the active vibration control of beams and plates containing
distributed sensors and actuators subjected to both mechanical
and electrical loadings. Furthermore, Nguyen et al. have developed
extended finite element method for dynamic fracture of piezo-
electric materials [9].

Although the FEM has achieved remarkable progress in the
simulation of piezoelectric problem, there are certain inherent
drawbacks that limits the application of FEM [10]. The first issue is
overestimation of stiffness matrix due to the ‘overly-stiff’ phenom-
enon of a fully compatible FEM model of assumed displacement
based on the Galerkin weak form, which can cause ‘locking’
behavior and poor accuracy in stress solution. The second issue
is that the FEM is limited by the rigid reliance on the elements. The
third issue is mesh generation. Although the triangular elements
in 2D and tetrahedral elements in 3D are very easy to generate for
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problems with complex geometry automatically using commercial
software, the FEM dislikes the triangular elements or tetrahedral
elements due to poor accuracy for these kinds of elements [10].

In recent years, strain smoothing techniques have been applied
by Chen et al. [11] to stabilize the solutions of nodal integrated
meshfree methods and also in the natural element method [11].
Using the generalized gradient smoothing technique, Liu and
coworkers have developed a series of smoothed finite element
methods (SFEM), which can effectively soften the stiffness of the
model and hence make these methods possess a number of
attractive features [12–15]. Currently, the SFEM has been extended
to solve many engineering problems such as fracture mechanics
[16], plate [17] and vibration [18] problems.

With the node-based strain smoothing operation, the node
based smoothed point interpolation method (NS-PIM) and a node-
based smoothed finite element method NS-FEM [19,20] have been
formulated in the frame of meshfree and FEM, respectively. It has
been found that the NS-PIM and NS-FEM work well with linear
(triangular for 2D and tetrahedral for 3D) elements, are free from
volumetric locking, and especially can provide upper bound
solutions in energy norm for elasticity problems [21,22]. On the
other hand, due to ‘stiffer’ stiffness matrix in FEM model, the
displacement-based fully compatible FEM gives a lower bound in
energy norm for the exact solution to elasticity problems [23–25].
Therefore, the certified solutions with both upper and lower
bounds can be achieved using both NS-FEM and FEM. The
important point is that FEM and NS-FEM play complementary
roles in the numerical analysis for solution bounds. Based on this
idea, Xu et al [26] has developed hybrid smoothed finite element
method (HS-FEM) by combining the good features of two methods
into a single numerical method. This newly developed method is
able to provide a new means to obtain even nearly exact solutions.

Lured by excellence feature of HS-FEM, the HS-FEM is further
extended to analyze static and frequency analyses of piezoelectric
structures. A parameter α is equipped in the HS-FEM for ultra-
accurate solutions. With adjustment of α value, a solution that is as
close as possible to the exact solution can be obtained using a
finite number of triangular elements or tetrahedral elements.
Additionally, both the lower and upper bound of the exact solution
in terms of strain energy and eigenfrequencies are obtained.

The outline of this paper is as follows: in Section 2, the Galerkin
finite element method formulation for piezoelectric problem is
presented. The concept of HS-FEM is illustrated in Section 3. In
Section 4, the detailed procedure of determination of α value is
presented. In Section 5, intensive numerical examples including
2D and 3D are examined to study the accuracy, convergence rate
and efficiency of the present method. Finally, Section 6 concludes
this work.

2. Formulation of the piezoelectric problem using finite
element method

The governing equation in piezoelectric problem can be written
in the following form:

divσþb¼ 0 ð1Þ

divDþqs ¼ 0 ð2Þ
where σ is the Cauchy stress tensor, b denotes the vector of body
force applied in the problem domain, D represents the eclectic
displacement and qs is the free point charge density.

If inertia effect is considered in piezoelectric problem, the
strong form of governing equation can be expressed:

∇σþb¼ ρ €uþg _u ð3Þ
where ρ is the density of the mass, and g is a set of viscosity.

The mechanical and electric boundary conditions are given as

ϕ¼ϕΓ u¼ uΓ on Γu essential boundary condition ð4Þ

σdn¼ tΓ Ddn¼ qΓ on Γt natural boundary condition ð5Þ
where ϕΓ and uΓ represent the prescribed electrical potential and
the vector of the prescribed displacement; qΓ and tΓ denote the
surface charge and the vector of prescribed tractions; and nj is the
surface outward normal of the boundary.

The general functional L is determined by a summation of the
kinetic energy, strain energy, dielectric energy and potential
energy arising from external work

L¼
Z
Ω

1
2
ρ _uT _u�1

2
εTσþ1

2
DTEþuT fs�ϕqs

� �
dΩþ

Z
V
uT fbdVþ∑uTFP�∑ϕQ p

ð6Þ
where u and _u are the vectors of mechanical displacements and
velocity; FP , fb and fs are the vectors of point, mechanical body,
surface forces; qs and Q p are the vectors of surface and point
charges respectively; ϕ is electric potentials; σ, ε, D, E are vectors
of mechanical stresses, mechanical strains, electric displacements
and electric fields respectively. For the linear electroelastic pro-
blem, the constitutive equations have the following form:

fσg ¼ ½cE�fεg�½e�T fEg ð7Þ

fDg ¼ ½e�fεgþ½κs�fEg ð8Þ
where cE is the elastic matrix for constant electric field, κs is the
dielectric constant matrix for constant mechanical strain and e is
the piezoelectric matrix.

The strain ε and the electric field E are, respectively, derived
from the displacement u and the electric potential φ, and could be
expressed in the following vector form:

ε¼∇su ð9Þ

E¼ �gradφ ð10Þ
where ∇s is the symmetric gradient operator,
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using the FEM approximation method, the mechanical displace-
ments and electrical potentials are similarly interpolated with
approximate shape functions in the following expressions:

uðxÞ ¼ ∑
iAnen

NiðxÞdi ð13Þ

ϕðxÞ ¼ ∑
iAne

n

NiðxÞϕi ð14Þ

where ne
n is the number of the nodal variables of the element, di is

the nodal displacement vector, ϕi is the nodal electric potential
and NiðxÞ is the shape function matrix.

With the help of Eqs. (13) and (14), the linear strain ε and
electric field E are derived from

ε¼∇su¼ ∑
iAnen

Bu
i dI ð15Þ

E¼ �gradϕ¼ � ∑
iAnen

Bϕi ϕI ð16Þ
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