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a b s t r a c t

In this paper, we construct the two- and three-dimensional generalized polyharmonic multiquadrics
(GPMQ) of order (K,L), which are the particular solution of the K-th order generalized multiquadrics
(GMQ) associated with the L-th order polyharmonic operator for L40. By observing the first few orders
of the GPMQs, we construct methods of undetermined coefficients and determine the unknown
coefficients by expanding the GPMQs into Laurent series. The derived GPMQs are hierarchically unique
and infinitely differentiable. Then, the GPMQ definitions are extended for Lo0 and the solutions are
derived by similar methods. Both symbolic and floating-point implementations are performed for
automatically obtaining the GPMQs of arbitrary orders, in which the former is explicitly provided and the
later enables to implement numerical methods free from bookkeeping. The derived GPMQs are validated
by numerical experiments, in which significant improvement on the accuracy can be observed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A radial basis function (RBF) is a real-valued function whose
value depends only on the distance from a certain prescribed
center. Traditionally, RBFs allow for scattered data to be easily used
in computations. Among the various RBFs, the Gaussian function,
Hardy's multiquadrics (MQ) [1], Duchon's augmented polyharmo-
nic spline (APS) [2], and Wendland's compactly supported RBF
(CSRBF) [3] are the more popular ones. A review by Franke [4]
showed that the MQ performed better in the applications of the
RBF interpolations (RBF-I).

In the early 1990s, Kansa [5,6] made the first attempt to use the
MQ for approximating the solutions of partial differential equa-
tions (PDEs). The method, denoted as the global radial-basis-function
collocation method (GRCM), is meshless, simple and has been used for
a wide range of PDEs, such as solutions of Navier–Stokes equations [7],
numerical wave tanks [8–10], natural convections in porous media
[11] and solid–liquid phase change problems [12]. The advantage of
the GRCM is its effectiveness in dealing with a complex domain.

Alternatively, Nardini and Brebbia [13] developed the dual
reciprocity method (DRM) in which the RBFs were used for
approximating the particular solution of the considered PDE and
then the complementary solution was solved by boundary-type
numerical methods, such as the boundary element method and the

method of fundamental solutions (MFS). In the early development of
DRM, the ad-hoc function, 1þr, were exclusively used. In order to
improve the accuracy of the computation, researchers applied the
theory of radial basis functions (RBFs) to the DRM [14,15]. In 1996,
Golberg et al. [16] showed the accuracy improvement of the MQ
over other RBFs in the application of the dual reciprocity method of
fundamental solutions (DRMFS).

When the MQ is applied in the RBF-I, GRCM and DRMFS, it results
in ill-conditioned system matrix especially when high resolutions are
considered. Recently, a localization procedure was proposed to trans-
form the dense system matrices of the GRCM into sparse ones. Lee
et al. [17] first proposed the local RBF collocation method (LRCM)
based on the MQ. The LRCM had been applied to interdisciplinary
fields, such as the solutions of diffusion problem [18], Darcy flow in
porous media [19], macrosegregation phenomena [20] and others.

In addition to the MQ, the inverse MQ was also considered for
problems with vanish far-field solutions in the original study of
Hardy [1]. Furthermore, there were also researchers trying to
improve the performance of the MQ by considering the general-
ized MQ (GMQ) [21–25]. In a recent review of Sarra and Kansa
[21], they indicated that there seemed to be no particular advan-
tage for the GMQ over the MQ. Alternatively, Sarra [26] considered
the integrated MQ as a new RBF and addressed that the integrated
MQ may produce significantly more accurate results over a wide
range of shape parameters.

Furthermore, Chen et al. [27,28] used the particular solution of
the MQ associated with the Laplace operator as a replacing RBF in
the application of the GRCM and proposed the so-called method of
approximate particular solutions. In their study, the particular
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solution was originally derived by Golberg et al. [16]. Analytical
particular solutions of the MQ can also be found for the biharmo-
nic operator [29] and the forth- and third- ordered polyharmonic
operators respectively in two and three dimensions [30]. Recently,
Tsai [31] derived the polyharmonic MQ (PMQ) which is the
particular solution of the MQ associated with the polyharmonic
operators and showed accuracy improvement of the PMQ over the
MQ in the applications of DRMFS.

In this study, we will extend the study in [31] and derive the
analytical particular solutions of the GMQ associated with the
two- and three-dimensional polyharmonic operators. Mathematica
codes will be implemented and provided for automatically deriv-
ing the generalized PMQs (GPMQs) of arbitrary orders. The GPMQs
will be applied to all of the RBF-I, GRCM, DRMFS and LRCM.

This paper is organized as follows: the problem is mathema-
tically modeled in Section 2. Then, the two- and three- dimen-
sional GPMQs (L40) are derived in Sections 3 and 4, respectively.
For Lr0, the GPMQs are given in Section 5. Some numerical
experiments are carried out to validate the GPMQ in section 6 and
the conclusions are drawn in Section 7.

2. Definition of the problem

In this study, we derive the two- and three-dimensional GPMQ
ψ ð2DÞ
K;L and ψ ð3DÞ

K ;L of order K; Lð Þ, which are governed by

ΔðnÞ
r ψ ðnÞ

K;L ¼ ψ ðnÞ
K;L�1 ð1Þ

with

ψ ðnÞ
K;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þr2

p 2Kþ1
; ð2Þ

Δð2DÞ
r ¼ 1

r
d
dr

r
d
dr

� �
; ð3Þ

and

Δð3DÞ
r ¼ 1

r2
d
dr

r2
d
dr

� �
: ð4Þ

In Eqs. (1), (2) and the following, nð Þ stands for 2Dð Þ or 3Dð Þ and
K and L are arbitrary integers. If we make the following change of
variables

r¼ cR; ð5Þ

ψ ðnÞ
K;L ¼ c2Lþ2Kþ1Ψ ðnÞ

K ;L: ð6Þ

Eqs. (1) and (2) respectively become

ΔðnÞ
R Ψ ðnÞ

K;L ¼Ψ ðnÞ
K;L�1; ð7Þ

Ψ ðnÞ
K ;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2

q 2Kþ1

: ð8Þ

Using Eq. (8), Eq. (7) can be rewritten as

ΔðnÞ
R

� �L
Ψ ðnÞ

K;L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2

q 2Kþ1

ð9Þ

for L40. It is clear that Ψ ðnÞ
K;0-R2Kþ1 as R-1 and therefore it is

bounded only for Kr�1.
It can be noticed that the solutions of Eqs. (7) and (8) are also

the solutions of Eq. (9). However, the converse is not always true
since the homogeneous solutions of Eq. (9) can be arbitrarily
chosen. In the next two sections, a specific choice will be made to
ensure the solutions of Eq. (9) are also the solutions of Eqs. (7) and
(8). Furthermore, the definition of GPMQs (7) can be extended to

the cases of Lr0 as

ΔðnÞ
R

� ��L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2

q 2Kþ1

¼ Ψ ðnÞ
K ;L: ð10Þ

Finally, the GPMQs governed by Eqs. (1) and (2) can be obtained by
using Eq. (6).

3. Two-dimensional GPMQ for L40

It is clear that the solution of Eq. (9) can be found by straight
integrations. For the two-dimensional case, it can be expressed as
follows:

Ψ ð2DÞ
K;L ¼ IR�1IR

� �L ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2

q 2Kþ1

; ð11Þ

where the integral operator I is defined as
R
dR. When observing

the first few orders of the GPMQs obtained by the symbolic
software, Mathematica [32], we can find that

Ψ ð2DÞ
K;L ¼ ∑

MK;L
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 !
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ð12Þ
with

Φð2DÞ
K;L;j ¼
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K;L;jR

2j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
for KZ�2L

Að2DÞ
K;L;jR

2j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2

p 2Kþ4Lþ1
for Ko�2L:

8><
>: ð13Þ

In Eq. (13), we have used the following definition:

MK;L ¼
Max LþK ; L�2f g for KZ�2L
�K�L�2 for Ko�2L:

�
ð14Þ

In Eq. (12), the first two series form the particular solutions

with undetermined coefficients Að2DÞ
K ;L;j and Bð2DÞ

K;L;j and the last two

series give the homogeneous solutions with arbitrary coefficients

Cð2DÞ
K ;L;j and Dð2DÞ

K ;L;j. To make Ψ ð2DÞ
K ;L infinitely differentiable, we obviously

need

Dð2DÞ
K ;L;j ¼ 0: ð15Þ

Then Eq. (12) becomes
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In Eq. (16), the coefficients Að2DÞ
K;L;j and Bð2DÞ

K ;L;j should be determined

such that the GPMQ Ψ ð2DÞ
K;L satisfies Eq. (9) and the arbitrary co-

efficients Cð2DÞ
K ;L;j should be chosen to ensure the GPMQ Ψ ð2DÞ

K ;L unique

and also satisfying the hierarchical relation (7) and (8). Therefore, we
expand Eq. (16) into the Maclaurin series as

Ψ ð2DÞ
K;L ¼ ∑

1

i ¼ 0
∑

Min MK;L ;if g
j ¼ 0
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1
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with
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