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a b s t r a c t

A meshless local integral equation (LIE) method is proposed for numerical simulation of 2D pattern
formation in nonlinear reaction diffusion systems. The method uses weak formulation of the differential
governing equations on local sub-domains with using the Green function of the Laplace operator as the
test function. The moving least square (MLS) approximation is employed for spatial variations of field
variables while the time evolution is discretized by using suitable finite difference approximations. The
effect of parameters and conditions are studied by considering the well known Schnakenberg model.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known a homogenizing influence of diffusion in nature.
Alan Turing was the first who discovered that spatial patterns would
be formed by a reaction–diffusion system combining local activation
with long range inhibition [1]. He demonstrated how a simple model
system of coupled reaction–diffusion equations could give rise to
spatial patterns in chemical concentrations through a process of
chemical instability (diffusion driven instability). Turing also pointed
out the role of such patterns in biological pattern formation. The first
experimental evidence supporting the Turing instability was found in
chemistry rather recently [2,3]. A large variety of pattern formation
with various applications has been explained by Turing type models. It
is not the aim of this paper to give a review of such application and
modeling of pattern formation [4,5]. Recall that several Turing models
have been developed such as the Gierer–Meinhardt model [6], Gray–
Scott model [7], Lengyel–Epstein model [8], Brusselator model [9],
Schnakenberg model [10] and Selkov model [11].

A typical Turing system is a reaction–diffusion system consisting of
at least two chemical species (activator and inhibitor) exhibiting a
steady state which is stable to small perturbations in the absence of
diffusion, but becomes unstable when diffusion is present (Turing
instability). The formation of spatial patterns is principally a nonlinear
phenomenon. Otherwise the unstable modes would grow unlimit-
edly. Linear theory does determine conditions under which

spontaneous pattern formation is allowed for certain parameter
ranges [4]. Initial and boundary conditions, the shape and size of
the domain yield various forms of patterns. To determinewhich of the
various possible patterns will be stable or which conversion takes
place, one has to go beyond linear theory. Various numerical methods
have been used to solution of nonlinear reaction–diffusion systems
and computer simulations of pattern formation. In [12], the authors
applied a moving grid finite element method to some models of the
Turing problem, where the mesh movement was prescribed to mimic
the growth that is observed in nature. Shakeri and Dehghan [13]
combined the spectral element method and finite volume technique
for numerical solution of the Turing model, Zhu et al. [14] applied
Discontinuous Galerkin method to reaction–diffusion systems in
developmental biology.

In recent decades, various mesh-free methods have been suc-
cessful in solution of many scientific and engineering problems.
Besides avoiding mesh generation, one could name other advantages
such as elimination of re-meshing, elimination of failure of numer-
ical stability due to large distortions of finite elements, convenient
modeling of separable media and problems with moving bound-
aries. Therefore one can expect the mesh-free methods to become
attractive also in numerical simulations of nonlinear coupled reac-
tion–diffusion problems [15,16]. In these works, the authors devel-
oped weak formulations of general reaction–diffusion problems on
local subdomains with using meshless approximation for field
variables. The test functions have been utilized either as the Heavi-
side function or the Green's function. The accuracy of the proposed
methods has been verified on examples with analytical benchmark
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solutions. In [20], the authors modified the formulation given in [15]
by simple replacement of the MLS-approximation by moving Kriging
interpolation and verified the technique on the same numerical
examples as used in [16]. The strong mesh-free formulations have
been developed and applied to reaction-diffusion [21] and advec-
tion–diffusion–reaction equations [22]. In [21], the effects of various
geometries on resulting patterns have been studied in Schankenberg
as well as in Gierer–Meinhardt model. In [21], the MLS approxima-
tion is used for spatial variations of field variables while the radial
basis functions in view of multiquadrics in [22].

In this paper, the formulation given in [16] is extended to
numerical simulations of pattern formation in nonlinear reaction–
diffusion systems exhibiting diffusion driven instability after spatial
perturbation of homogeneous steady state initial conditions. The local
integral equation (LIE) method is developed for numerical simulations
of 2-d pattern formation in reaction–diffusion systems. The method is
truly meshless, since no elements are required either for approxima-
tions or for integration in the analyzed domain. The moving least
square (MLS) approximation is employed for spatial variations of field
variables while the time evolution is discretized by using the one-step
θ method. The nodal points are distributed freely inside the analyzed
domain and on its boundary without using any connectivity among
nodes. The LIE is a weak formulation of the differential governing
equations on local sub-domains considered around each interior node
with using the Green function of the Laplace operator as the test
function. Thus the integral form of the governing equations is the
integral representation of field variables at interior nodes. The appro-
priate choice of the shape of sub-domains enables us to find the Green
function vanishing on the boundary of the sub-domain and so
eliminate the normal derivatives of the field variables from the
formulation. This is valuable achievement since the accuracy of
approximations for derivatives is lower than for primary fields and
also the evaluation of derivatives at integration points prolongs the
computation. The nonlinear terms are treated iteratively within each
time step. The paper is organized as follows. In Section 2, mathema-
tical formulation of reaction–diffusion problems is summarized and
the main results of the linear theory of stability analysis [4] are
overviewed. In Section 3, the LIE formulation for solution of initial-
boundary value problems in reaction-diffusion systems is presented.
Section 4 is devoted to numerical simulations in order to verify the
developed method. Attention is paid to illustrate the dependence of
pattern shape on the initial conditions, size and shape of the analyzed
domain. Our conclusions are summarized in Section 5.

2. Mathematical formulation of reaction–diffusion problems

The governing equations for the concentrations of two chemi-
cals uðx; tÞand vðx; tÞsubjected to reaction–diffusion processes are
given as follows [4]:

∂u
∂t

¼∇2uþγf ðu; vÞ; ∂v
∂t

¼ d∇2vþγgðu; vÞ in Ω½0; T �: ð1Þ

These equations must be completed with prescription of the
initial values uðx;0Þ; vðx;0Þ� �

and the boundary conditions which
are usually taken as the Neumann type

∂u
∂n

¼ 0;
∂v
∂n

¼ 0 on ∂Ω ð2Þ

The zero flux conditions imply no external input. If we imposed
fixed boundary conditions on u and v, the spatial patterning could
be a direct consequence of the boundary conditions (as it can be
seen in ecological problems).

The relevant homogeneous steady state ðu0; v0Þ of (1) is the
positive solution of

f ðu; vÞ ¼ 0; gðu; vÞ ¼ 0:

Since we are concerned with diffusion-driven instability, the
steady state must be homogeneous and satisfy the following
equations:

∂u
∂t

¼ γf ðu; vÞ; ∂v
∂t

¼ γgðu; vÞ; ð3Þ

which becomes

∂w
∂t

¼ γA w; A¼
f ;u f ;v
g;u g;v

 !
ð4Þ

for w¼ ðu�u0; v�v0ÞT , assuming linear stability about the steady
state ðu0; v0Þ. The partial derivatives of f and gare taken to be
evaluated at the steady state. Looking for the time evolution in the
form w� eωt , where ω is the eigenvalue, we get the condition
Re ωo0for requirement of linear stability of the steady state
w¼ 0. It can be shown [4] that the linear stability is guaranteed if

f ;uþg;vo0; f ;ug;v� f ;vg;u40: ð5Þ

The solution of the linearized full reaction–diffusion system (1),

∂w
∂t

¼D∇2wþγA w; D¼ 1 0
0 d

� �
; ð6Þ

can be expanded as follows:

wðx; tÞ ¼∑
k
cke

ωtWkðxÞ; ð7Þ

with WkðxÞ being the eigenfunction of the Laplace operator
corresponding to the eigenvalue k2. The expansion coefficients ck
being determined by a Fourier expansion of the initial conditions
in terms of WkðxÞ. The eigenvalue ωdetermines temporal growth
of the linearized solution. For particular k2, the values ωðk2Þ are
determined by the roots of the characteristic equation

ω2þω k2ð1þdÞ�γðf ;uþg;vÞ
h i

þhðk2Þ ¼ 0 ð8Þ

with

hðk2Þ ¼ k4d�k2γðdf ;uþg;vÞþγ2ðf ;ug;v� f ;vg;uÞ ð9Þ

In the absence of any spatial effects (k2 ¼ 0) we have already
imposed constraints resulting from the requirement of the linear
stability of the homogeneous steady state solution. For the steady
state to be unstable to spatial disturbances we require Re ωðk2Þ40
for some k2a0. This can happen only if hðk2Þo0 for some k2a0,
since the roots are given by the following equation:

ω¼ �1
2

k2ð1þdÞ�γðf ;uþg;vÞ
h i

7
1
2

k2ð1þdÞ�γðf ;uþg;vÞ
h i2

�4hðk2Þ
� �1=2

ð10Þ
and ½k2ð1þdÞ�γðf ;uþg;vÞ�40 because f ;uþg;vo0, k2ð1þdÞ40 for
k2a0.

Since ðf ;ug;v� f ;vg;uÞ40, the only possibility for hðk2Þ to be
negative is if ðdf ;uþg;vÞ40. This implies that da1 and f ;ug;vo0
because f ;uþg;vo0 from (5).

ðdf ;uþg;vÞ40; da1 ð11Þ

The conditions are necessary but not sufficient for Re ωðk2Þ40.
For hðk2Þ to be negative for some k2a0, the minimum hmin must
be negative, hence and from (9)

hmin ¼ γ2ðf ;ug;v� f ;vg;uÞ�dk4m; k2m ¼ γ
df ;uþg;v

2d
: ð12Þ

Thus, the condition that hðk2Þo0 for some k2a0 is as follows:

ðdf ;uþg;vÞ2
4d

4 ðf ;ug;v� f ;vg;uÞ: ð13Þ
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