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a b s t r a c t

The higher order multipoint meshless method for boundary value problems is considered in this paper.
The new method relies on the Collatz multipoint concept and the meshless FDM.

The main idea of multipoint technique is based on raising the local approximation order of a
searched function by assuming additional degrees of freedom at each node of stencil, e.g. by including a
combination of nodal values of the right-hand side of considered differential equation. Thus, the FD
formula takes into account a combination of unknown function values which is equal a combination of
additional d.o.f., e.g. right-hand side of PDE. In this way one may generate higher order FD operators
without any additional unknowns using the same set of nodes in stencil as in the non-multipoint case.

Essential modifications and extensions of the old classical multipoint formulation have been
introduced for the purpose of this research. New fully automatic multipoint meshless FDM uses the
moving weighted least squares approximation instead of the interpolation proposed by Collatz, and is
based on arbitrarily distributed cloud of nodes. Moreover, besides the local formulation, also various
global formulations of b.v. problems are possible.

Several numerical benchmark problems analyzed illustrate the effectiveness of the proposed
approach.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Various ways exist in modern numerical analysis to improve
the solution precision of boundary value (b.v.) problems. There are
two main directions of such improvement. The first one is based
on the mesh density increase, preferably using an adaptive (h-
type) solution approach. The second option is provided by rising
the approximation order (p-type). It may be raised in several ways.
In the finite difference method (FDM) the oldest one is called the
deferred correction technique [1]. It uses FD stars (stencils) with
the increased number of nodes. Another way uses the same simple
stars, but with additional generalized degrees of freedom (d.o.f.)
introduced there [2]. The most recent concepts [3] are based either
on evaluation of the higher order derivatives and using them as
“correction terms” in the FDM equations [4], or on the modified
multipoint approach [5] considered in this paper.

The new approach is based on the meshless finite difference
method (MFDM) [2] using arbitrarily irregular grids as well as
various formulations of b.v. problem. The multipoint MFDM
provides raising the order of approximation by introducing

additional degrees of freedom at the star nodes, taking into
account a combination of searched function values together with
combination of the right hand side values of the considered
equation (specific approach) or other chosen operator (general
approach). In this way one may generate higher order FD operators
using the same set of nodes in a meshless FD (MFD) star (stencil,
Fig. 1a) as in the non multipoint case. This increase the computa-
tional effectiveness in the specific multipoint version (Fig. 1b),
where the higher order (HO) approach is obtained without any
additional unknowns. The general version (Fig. 1c) of multipoint
method instead provides general HO solution approach for all
types of b.v. problems and various physical processes being
modeled on the same geometric domain due to relations between
unknown function and its derivatives.

The basic concept of the multipoint solution approach was
introduced long time ago by Lothar Collatz [6] as improvement of
the FDM. In Section 2 of this paper the main idea of the Collatz
multipoint method is presented, whereas in Section 3 the features of
multipoint concept are summarized. In his book [6] Collatz has
described the essence of HO multipoint concept and has calculated
multipoint FD formulas for several differential operators only due to
computational difficulties with hand calculations. This basic multi-
point approach has been reformulated by the authors and extended to
the fully automatic multipoint meshless finite difference method
which is discussed in Section 4. In comparison with the Collatz
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approach, the following basic modifications have been included in the
new method:

– the various global (weak) and global-local formulations of b.v.
problems may be applied besides the local (strong) one;

– cloud of arbitrarily distributed nodes may be used instead of
regular meshes; and

– the moving weighted least squares (MWLS) approximation
technique [2,7] is used instead of the interpolation one.

The paper is illustrated with the selected results of benchmark
tests (Section 5). Eventually, benefits of the proposed approach are
highlighted in the final remarks (Section 6).

Only the main concept of the new multipoint MFDM approach
is described here, having the details of particular problems to our
other papers ([8] and articles that follows).

2. Interpolation based multipoint approach

As mentioned before, the main idea of the Collatz multipoint
approach [6] relies on an improvement of the standard FDM due to
introducing into the FD operator values of the right hand side of
the considered differential equation (the specific approach) or the
unknown function derivatives (the general approach) defined at
nodes of the FD star (Fig. 1).

Thus, in the multipoint method two approaches are distin-
guished namely the specific and the general ones. Both of them
provide higher order FD operators. The specific approach is more
simple, but it may be applied only to linear boundary value
problems. The general multipoint approach is more complex, but
it may be used in all types of b.v. problem formulation, linear and
non-linear ones.

2.1. Specific case

The specific approach is simpler than the general one, allows to
provide HO solution without any additional unknowns, but its
application is more restricted. Besides the d.o.f. assigned to
unknown function values it also uses known values of a given
differential operator (e.g. right hand side of ODE or PDE).

Consider the locally formulated boundary value problem

Lu¼ uðnÞ þ ∑
n�1

q ¼ 0
lquðqÞ ¼ f ðPÞ; u¼ uðPÞ; PAΩ; ð1Þ

with relevant boundary conditions

Gu¼ gðPÞ; PA∂Ω:

When the nodes in the domain Ω are introduced, one may
select appropriate FD stars and discretize the given operator. Using

an auxiliary function Φ summed over all nodes j (j¼1,2,…m ) of
the FD star with the central node i, the basic multipoint formula is
assumed as follows:

Φi ¼∑
jðiÞ
cjuj�∑

jðiÞ
αjf j; ð2Þ

where cj¼cj(i), α j¼α j(i), and

∑
jðiÞ
cjuj ¼∑

jðiÞ
αjf j for Φi ¼ 0: ð3Þ

To obtain this formula, one expands uj and the right hand side
of the considered equation f j ¼ L uj into the truncated (by includ-
ing higher order terms and neglecting Δ0j and Δj) Taylor series
in respect of the stencil central node i

j j j j j ju u f f j m ð4Þ

Assuming the matrix notation, one may write relation (2) as
Φi ¼ Ciui, where Ci ¼ cjðiÞ; αjðiÞ

� �
are unknown coefficients and

ui ¼ ujðiÞ; f jðiÞ
n o

– degrees of freedom, and the truncated Taylor

series (4) with respect to the central node Pi as follows ui �ΨiDui,
where Dui ¼ ui; u0

i; :::; ui
ðpmaxÞ

� �
is the vector of all local type

derivatives up to pmax order, while the matrix Ψ is the Taylor
series coefficients matrix.

Unknown coefficients C of the multipoint finite difference
formula discretizing the problem (1) may be found from the

requirement Φi � CiΨiDui ¼ 0 and Ci Ψi ¼ 0, taking into

account their obvious linear dependence. Here Φi is a part of Φi

involving only the terms up to the order pmax, resulting from the
truncated Taylor series.

Therefore, the coefficients cj¼cj(i) and αj¼aj(i) are computed by
solving the following system of equations:

∑
j
cj

hpj
p! ¼ 0; for derivative orders p¼ 0; 1; :::; r�1

∑
j

cj
hpj
p!�αj∑

q
lq

hj
p� qð Þ þ

ðp�qÞ þ !

 !
¼ 0; for p¼ r; :::; pmax;

:

8>>>><
>>>>:

ð5Þ

where r is the lowest derivative order in f, pmax is the highest
derivative order with imposed zero coefficient value.

In this way e.g. for the 1D b.v. problem

aUu0 þu″¼ f ; u0 ¼ uN ¼ 0 ð6Þ

and tri-nodal stencil, the FD multipoint operator

Au Bu Cu f f f

Fig. 1. MFD star used in (a) meshless FDM; (b) specific multipoint MFDM and (c) general multipoint MFDM.
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