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a b s t r a c t

Numerical solutions of the Helmholtz equation suffer from pollution effect especially for higher
wavenumbers. The major cause for this is the dispersion error which is defined as the relative phase
difference between the numerical solution of the wave and the exact wave. The dispersion error for the
meshless methods can be a priori determined at an interior source node assuming that the potential
field obeys a harmonic evolution with the numerical wavenumber.

In this paper, the dispersion errors, in the solution of 2D Helmholtz equation, for two different
meshless methods are investigated, the local boundary integral equation method and the radial basis
integral equation method. Radial basis functions, with second order polynomials and frequency-
dependent polynomial basis vectors are used for the interpolation of the potential field in both methods.
The results have been found to be of comparable accuracy with other meshless approaches reported in
the literature.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate solution of the Helmholtz equation is of impor-
tance for many modern applications in acoustics such as ultra-
sonics, microfluidics, aeroacoustics, etc. Simulations involving
high frequency waves and large scale industrial setups become
cumbersome due to high computational storage and CPU time
requirements.

When solving the elliptic equations, it is sufficient to increase the
number of elements in the domain linearly in order to achieve certain
accuracy; however, this is not the case for acoustic problems due to
the unstable nature of the Helmholtz operator. Namely, a linear
refinement of the mesh for linear increase in the wavenumber leads
to an inaccuracy which grows more than linearly and this is known as
the pollution effect [1]. The major component of the pollution is the
dispersion error, which is defined as the relative phase difference
between the exact and the numerical wave [2]. The dispersion and the
pollution of the finite element method (FEM) solutions have been
extensively studied. It has been shown that for 1D problems the
pollution effect can be completely removed [3] and that it is unavoid-
able for higher dimensions [1]. However, intensive research has been
devoted to reduce the dispersion error in higher dimensions, and thus

the pollution [1,4,5]. In the quasi-stabilized FEM [6], the interior
stencils of the system matrix are defined such that the number of
elements required per wave increases as slowly as possible with
increasing wavenumber and in the Galerkin least-squares method [7],
a modification to the variational problem can be applied in order to
minimize the dispersion.

The dispersion errors for meshless methods in acoustic computa-
tions have been reported for the element-free Galerkinmethod (EFGM)
[8–10] and the radial point interpolation method (RPIM) [11]. These
studies demonstrated that the dispersion error of the meshless
methods is significantly reduced in comparison to the classical FEM.
An extensive review has been carried out recently for the minimization
of the dispersion with respect to the internal parameters of the afore-
mentioned meshless methods [12].

The meshless local boundary integral equation (LBIE) method
was first introduced for the solution of potential problems by Zhu
et al. [13] and developed over the years for many engineering
problems such as elastostatics, thermoelasticity [14], magnetohy-
drodynamics [15] and heat conduction [16]. Chen et al. [17] have
implemented the LBIE in order to solve acoustic problems. They
have reported that the use of frequency-dependent radial basis
functions in the formulation leads to lower number of source
nodes required per wavelength.

In this work, the LBIE has been implemented using the radial
basis functions (RBFs) for the interpolation of the potential field.
This method will be referred to as the LBIE–RBF hereafter. Different
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internal parameters of the algorithm such as the radial basis
function, the radii of the local subdomains and the polynomials
used in the approximations are analysed and the optimization of
these parameters is studied in order to reduce the dispersion error.
The radius of the local subdomains and the domain of influence in
the RBF interpolation are investigated in detail; however, the
selection of the RBF is kept the same as in the previous work of
Ooi and Popov [18,19].

In this paper, the dispersion errors of the LBIE–RBF and the RBIE
are investigated. The two formulations use the RBFs for the approx-
imation of the field variable with an augmentation with polynomial
basis vectors. The second order polynomial approximation is used in
the computations as well as the well-known frequency-dependent
basis vectors [11,12]. In Section 2, the RBF formulation of the LBIE has
been outlined. Dispersion error is stated in Section 3 together with
the modification to the dispersion formulation for the RBIE. Numer-
ical results to the solutions of 1D and 2D problems showing the
dispersive behaviour of the methods and their comparison are
introduced in Section 4. Concluding remarks are given in Section 5.

2. Mathematical formulations

In this section, the LBIE–RBF and the RBIE for the solution of the
Helmholtz equation are introduced. The derivations of the LBIE–RBF
differ from the original LBIE [13] and the differences are discussed.
These differences are due to the interpolation procedures of the
field variables. In the original implementation of LBIE [13,14],
moving least squares approximation (MLSA) is used for the inter-
polation of the field variables whereas in the LBIE–RBF RBFs are
employed.

2.1. The problem

Consider a homogeneous and isotropic domain Ω enclosed by
the boundary Γ. The Helmholtz equation governing the potential
variable u in Ω is given by the following equation:

∇2uðxÞþk2uðxÞ ¼ 0; for xAΩ; ð1Þ
where x¼(x1, x2) is the field point coordinate in the two-dimensional
Cartesian system and k is the wavenumber. The following boundary
conditions are prescribed to the above problem:

uðxÞ ¼ uoðxÞ; for xAΓ1;

∂uðxÞ
∂n

¼ qoðxÞ; for xAΓ2; ð2Þ

where uo and qo are the suitably prescribed functions and Γ1 and Γ2

are the two non-intersecting parts of Γ such that Γ1[Γ2¼Γ.

2.2. The local boundary integral equation method

To solve the problems defined by (1) and (2) using the LBIE–RBF,
a set of Nt nodes denoted by ξm (for m¼1, 2, …, Nt�1, Nt) is
distributed across Ω[Γ. A circular subdomain defined by Ωs and
enclosed by the boundary Γs is generated. These subdomains, which
are centred at each node, may be of different radii and may overlap.
For the nodes at the global boundary, the subdomains are defined by
the intersection between the subdomain and part of the global
boundary. This is shown in Fig. 1.

In each subdomain, the integral representation of (1) is derived.
Using the Green's second identity, one obtains

cðξÞuðξÞ ¼
Z
Γs

unðx; ξÞ∂uðxÞ
∂n

�uðxÞ∂u
nðx; ξÞ
∂n

� �
dΓ; ð3Þ

where ξ¼(ξ1,ξ2) is the coordinate of the source point and c is a
geometrical coefficient such that c¼0.5 when ξ is at a smooth part

of the boundary and c¼1 when ξ is at the interior. In (3), un is the
fundamental solution of the Helmholtz equation given by the
following equation:

unðr; ξÞ ¼ � i
4
Hð2Þ

0 ðkrÞ; ð4Þ

where i is the unit imaginary number, r is the Euclidean distance
between the field point x and the source point ξ and H0

(2) is the
2nd order Hankel function of the second kind given by the
following equation:

Hð2Þ
0 ðkrÞ ¼ J0ðkrÞ� iY0ðkrÞ; ð5Þ

where J0 and Y0 are the Bessel functions of the first and second
kind, respectively.

One of the main features of the LBIE is the removal of the
gradient of the unknown function of u along the local boundary Γs

from the integral equation in (3) [13]. This is accomplished by the
use of a companion solution, i.e., an analytical solution u0 that
satisfies the following Dirichlet problem:

∇2u0ðx; ξÞþku'ðx; ξÞ ¼ 0; in Ωs;

u0ðx; ξÞ ¼ unðx;ξÞ on Γs: ð6Þ
According to Sladek et al. [16], the problem defined in (6) cannot

be solved analytically. As a result, previous attempts at solving the
Helmholtz equation using the LBIE [17] were carried out based on
the integral equation derived using the fundamental solution of the
Laplace equation. This resulted in a domain integral in the integral
representation but the Dirichlet problem similar to the one in (6) for
the Laplace fundamental solution can be solved analytically.

In the present study, a different approach of solving the Helm-
holtz equation using the LBIE is suggested. Instead of using the
fundamental solution of the Laplace equation, we propose to use a
different companion solution, one that satisfies

∇2u0ðx; ξÞ ¼ 0; in Ωs;

u0ðx; ξÞ ¼ unðx; ξÞ on Γs: ð7Þ
Using unn¼un�u

0
as the modified test function and the defini-

tion of the companion solution in (8), the integral representation
of (1) becomes

uðξÞ ¼ �
Z
Γs

uðxÞ∂u
nnðx; ξÞ
∂n

dΓ�∬Ωs
k2u0ðx; ξÞuðξÞdΩ; ð8Þ

for ξ at the interior. Eq. (8) is expressed purely in terms of the
potential field and is free of the gradient.

The integral equation in (8) is valid only for a subdomain that is
completely inside the solution domain Ω. For subdomains at the
global boundary, the concept of the companion solution does not
apply for the part of the local boundary that is formed by the
global boundary. In this case, the integral equation is given by the

Fig. 1. Source nodes and local sub-domains placed in the solution domain, Ω, and
on the global boundary, Γ, for both the LBIE and the RBIE.
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