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a b s t r a c t

In this paper, a local meshless method is presented, and this method is based on the linear combination
of moving least squares and local radial basis functions in the same compact support domain, by
changing the coefficient of the linear combination, the new method possesses the properties of moving
least squares approximation and local radial basis functions, because of the local property of this
method, it gives us the convenience of computing and it is suitable for practical problems. Numerical
experiments are given to demonstrate the accuracy, effectiveness and feasibility of this method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, meshless methods [1] have developed rapidly,
and they gradually become a class of powerful numerical methods. In
these methods, mesh generation on the spatial domain is not
necessary, only a set of scattered nodes are used to approximate
the solution. So compared with the mesh dependent methods, it
is easier to deal with the large deformation problem and the com-
plicated domains problem. The meshless methods can be categorised
into three groups according to the formulation procedures: meshless
methods based on weak-forms [2], meshless methods based on
collocation technique [3] and meshless methods based on the
combination of weak-form and collocation techniques [1]. In these
meshless methods, the construction of shape functions is the fore-
most problem, there are many constructing methods can be found in
literature, such as the moving least squares (MLS) method, the
partition of unity (PU) method, the radial basis functions (RBF)
method, and so on. Among these methods, the MLS method and
the RBF method are used frequently and successfully.

The MLS method is introduced by Lancaster and Salkauskas [4]
for the surface construction, and the corresponding error analysis
is discussed in [5–10]. In the MLS method, one can obtain a best
approximation in a weighted least squares sense, and this method
emphasizes the compacted support of weight function especially,
so it has the local characteristics. However, it has some limitations,

such as complex computation and lack of kronecker delta function
property.

The RBF method [11] is a very efficient interpolating technique
relating to the scattered data approximation, Wendland et al. give
the error analysis in [12–15]. The RBF method has high precision,
and it is very suitable for the scattered data model, moreover, it is
very effective to solve high dimensional problems. However, there
are some drawbacks, for example, the character of global sup-
ported. As the number of collocation points increases, the full
matrix that obtained from discretization scheme is always ill-
conditioned. In addition to this, it is very sensitive to select the free
parameter c, this will lead to the inaccuracy of calculation.

In recent years, the RBF is used to develop the radial point
interpolation (RPIM) method shape functions by Liu et al. [16,17],
the RPIM method is a local method, and it is the method based on
weak-forms. In 2003, the concept of local collocation method
based on the RBF has been introduced by Lee et al. [18], in it, they
present a meshless approximation strategy based on the local
multiquadric and the local inverse multiquadric approximations,
and they get the numerical solution of the poisson equation.
The multiquadric and the inverse multiquadric are both the radial
basis functions, so we denote this method by local radial basis
functions (LRBF) method. The LRBF method can overcome the ill-
conditioned problem and the sensitivity of the shape parameter in
the RBF method. Moreover, in contrast to RBF, only scattered data
in the neighboring points are used in LRBF, instead of using all the
points, thus the order of the matrix which is obtained from
discretization is reduced, so the matrix of shape function is sparse,
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which will improve the computational accuracy and be suitable for
solving large-scale problems [19].

In the practical problems, interpolation and approximation are
both very necessary, the approximation is in particular important
if the noise exists in data. A collocation meshless method based on
multiple basis functions is introduced by Mohamed et al. [20], in it,
they use a linear interpolating function of both MLS and RBF for
constructing shape function, but the method is global, the pro-
blems existed in the RBF are existence still. In this paper, we
present a local meshless method based on the linear combination
of MLS and LRBF in the same compact support, by changing the
coefficient of the linear combination, this new method will change
between interpolation and approximation. Because of the local
characteristics, the method brings the convenience of computing,
and it is very suitable for practical problems.

2. The shape function based on MLS and LRBF

In this section, we present the shape function based on the
linear combination of MLS and LRBF, and give the error analysis
and properties.

Let Ω be an open bounded domain in Rn, given data values
fxj;ujg; j¼ 1;2;…;N; where xj is the distinct scattered point in Ω,
uj is the data value of function u at the node xj, N is the number of
scattered nodes, and let uh denote the approximate function of u in
this work.

2.1. The outline of MLS, RBF and LRBF

In MLS method, the function uh is produced in a weighted
square sense, it can be defined as

uhðxÞ ¼ ∑
m

i ¼ 1
piðxÞaiðxÞ ¼ pT ðxÞaðxÞ; 8xAΩ; ð1Þ

where m is the number of terms in the basis, pi(x) is the monomial
basis function, ai(x) is the coefficient of the basis function, and

pT ðxÞ ¼ ½p1ðxÞ; p2ðxÞ;…; pmðxÞ�; ð2Þ

aðxÞ ¼ ½a1ðxÞ; a2ðxÞ;…; amðxÞ�: ð3Þ
The unknown coefficient a(x) is determined by minimizing the

functional J, which is defined as

J ¼ ∑
n

j ¼ 1
ωðx�xjÞðuhðxÞ�ujÞ2; ð4Þ

where n is the number of nodes in the support domain of the point
x, ωðx�xjÞ is the weight function, and xj is the node in the
influence domain of x.

Eq. (4) can be rewritten in the vector form

J ¼ ðPa�uÞTWðPa�uÞ; ð5Þ
where

P ¼

p1ðx1Þ p2ðx1Þ ⋯ pmðx1Þ
p1ðx2Þ p2ðx2Þ ⋯ pmðx2Þ

⋮ ⋮ ⋮
p1ðxnÞ p2ðxnÞ ⋯ pmðxnÞ

2
66664

3
77775; ð6Þ

u¼ ½u1;u2;…;un�T ; ð7Þ
and

W ¼

ωðx�x1Þ 0 ⋯ 0
0 ωðx�x2Þ ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ ωðx�xnÞ

2
66664

3
77775: ð8Þ

According to the conditions (5)–(8), taking the derivative a(x)
to zero, we have

AðxÞaðxÞ ¼ BðxÞu; ð9Þ
where

AðxÞ ¼ PTWP; BðxÞ ¼ PTW : ð10Þ
Then, we get

aðxÞ ¼ A�1ðxÞBðxÞu; ð11Þ
by substituting (11) into (1), we have

uhðxÞ ¼ pT ðxÞaðxÞ ¼ΦT ðxÞu¼ ∑
N

j ¼ 1
ϕjðxÞuj; ð12Þ

where

ΦT ðxÞ ¼ pT ðxÞA�1ðxÞBðxÞ ð13Þ
and ϕjðxÞ is the shape function.

In RBF method, the interpolating function uhðxÞ can be written as

uðxÞ ¼ ∑
N

j ¼ 1
λjϕðJx�xj J2Þ ¼ϕTΛ; xAΩ; ð14Þ

where λj is the unknown RBF coefficient, ϕðJx�xj J2Þ is radial basis
function, and

ϕ¼ ½ϕð‖x�x1‖2Þ;ϕð‖x�x2‖2Þ;…;ϕð‖x�xN‖2Þ�T ; ð15Þ

Λ¼ ½λ1; λ2;…; λN �T : ð16Þ
In order to compute λj, assume that we want to interpolate the

values uðxkÞ, i.e.,

uðxkÞ ¼ ∑
N

j ¼ 1
λjϕðJxk�xj J2Þ ¼ uk; k¼ 1;2;…;N; ð17Þ

then leads to a linear system

ΦΛ¼U; ð18Þ
where

Φ¼

ϕðJx1�x1 J2Þ ⋯ ϕðJx1�xk J2Þ ⋯ ϕðJx1�xN J2Þ
⋮ ⋮ ⋮

ϕðJxk�x1 J2Þ ⋯ ϕðJxk�xk J2Þ ⋯ ϕðJxk�xN J2Þ
⋮ ⋮ ⋮

ϕðJxN�x1 J2Þ ⋯ ϕðJxN�xk J2Þ ⋯ ϕðJxN�xN J2Þ

2
6666664

3
7777775
;

ð19Þ

U ¼ ½u1;u2;…;uk;…;uN�T : ð20Þ
So we can get the unknown coefficient Λ from the linear

system (18),

Λ¼Φ�1U; ð21Þ
by substituting (21) into (14), we get

uhðxÞ ¼ϕTΦ�1U ¼ΨU ¼ ∑
N

j ¼ 1
φjðxÞuj; ð22Þ

where

Ψ ¼ϕTΦ�1; ð23Þ
and φjðxÞ is the shape function.

In LRBF method, the interpolating function uhðxÞ can also be
written as

uðxÞ ¼ ∑
n

j ¼ 1
λjϕðJx�xj J2Þ ¼ϕTΛ; ð24Þ
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