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a b s t r a c t

Evidence theory has a strong ability to handle the epistemic uncertainty, based on which the uncertain
parameters with limited information can be conveniently treated. In this paper, a numerical method is
developed to predict the exterior acoustic field with epistemic uncertainties based on evidence theory. In
order to alleviate the computational cost, the interval analysis technique is adopted to acquire the
approximate frequency response amplitude bounds for each focal element, and the corresponding
formulations of interval perturbation analysis for exterior acoustic field prediction are deduced. Inspired
by the probability theory, the mean value, standard deviation and cumulative distribution are used to
describe the distribution characteristics of evidence variables. Two numerical examples are given to
illustrate the feasibility and effectiveness of the present method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing of people’s awareness of the performance of
NVH (noise, vibration and harshness), researches on the acoustic
behavior of structural-acoustic systems have been undergone a rapid
development in engineering recently [1,2]. The finite element
method (FEM) and the boundary element method (BEM) are cur-
rently the most preferred tools for the low-frequency acoustic
radiation problems [3,4]. Traditional acoustic radiation problems have
been analyzed under the assumption that the physical properties, the
applied loads and the boundary conditions are deterministic. How-
ever, due to the effects of manufacturing or construction tolerances,
aggressive environment factors and unpredictable external excita-
tions, uncertainties associated with the material properties, geo-
metric dimensions, applied loads and other parameters are
unavoidable. Quantifying, propagating and managing the concerned
uncertainty are important, sometimes even imperative [5]. Uncer-
tainty can be categorized into aleatory and epistemic types according
to the source of uncertainty [6]. Aleatory uncertainty is the inherent
variation associated with the physical system or the environment,
which is always modeled as random variables or random processes
using probability theory [7–9]. On the other hand, epistemic uncer-
tainty derives from incomplete and imprecise knowledge or informa-
tion in any phase or activity of the modeling process. The collection of
more information or an increase of knowledge would help to reduce

the level of uncertainty. Different kinds of theories have been
developed to handle the epistemic uncertainty, including convex
models [10–16], fuzzy sets [17–21], possibility theory [22,23] and
evidence theory [24,25], etc. Convex models are developed for the
cases where only the variation bounds of the uncertainty are
available. In fuzzy sets theory, the membership function is used to
characterize the input uncertainty. In possibility theory, evidences
from different experts are no conflicting. In addition, some theories
have been developed to handle the aleatory and epistemic uncer-
tainty simultaneously, which include the p-box approach [26,27] and
fuzzy probabilities [28,29]. In p-box approach, the left and right
bounds on the cumulative probability distribution function are
specified. Fuzzy probabilities deal with the situation when the
outcomes of some random experiment are fuzzy sets.

Among the mentioned approaches above, evidence theory seems
to be more general than other modeling techniques. Evidence theory
has a much more flexible framework to quantify epistemic uncer-
tainty from the perspective of its theoretical body. Under different
cases, it can provide equivalent formulations to classical probability
theory, possibility theory, p-box approach, fuzzy sets and convex
models, respectively. Besides, it can deal with limited and even
conflicting information from experts. Furthermore, the basic axioms
of evidence theory allow us to combine aleatory and epistemic mixed
uncertainties in a very natural way. Due to the above advantages,
evidence theory has been widely used in artificial intelligence related
fields, and it has been extended to conduct reliability analysis and
structural static and dynamic response analysis recently. The
strengths and weakness of evidence theory in reliability analysis
were summarized by Oberkampf and Helton through a simple
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algebraic function [30]. An efficient method was proposed for
evidence-theory-based reliability analysis using a multi-point
approximation [31,32]. The evidence theory and Bayesian theory
were compared for uncertainty quantification to test their effective-
ness for decision-making problems [33]. The sampling-based sensi-
tivity analysis and evidence theory were integrated for epistemic
uncertainty in model inputs [34]. Bae et al. developed a sensitivity
analysis technique for quantified uncertainty in evidence theory [35].
Mourelatos and Zhou proposed an efficient algorithm for evidence-
based design optimization (EBDO) [36]. A unified uncertainty analysis
approach was formulated to handle the mixture of aleatory and
epistemic uncertainty [37]. Agarwal et al. proposed a multidisciplin-
ary EBDO approach based upon the sequential approximate optimi-
zation strategy [38]. An EBDO approach through using a gradient
projection technique was proposed by Alyanak et al. [39]. Three
meta-modeling techniques for evidence-based reliability analysis
were compared by Bai et al. [40]. Jiang et al. proposed a novel
evidence-theory-based reliability analysis method [41], in which a
concept of most probable focal element is proposed and based on it
the computational cost of reliability analysis can be significantly
reduced. A numerical method was proposed for static and dynamic
analysis of structures with epistemic uncertainty through integrating
FEM with evidence theory [42].

The analysis of acoustic radiation problem is always one of the
key points in noise prediction, which is important for acquiring
high level NVH performance in engineering design. In practical
engineering, the parameters of the acoustic radiation system are
usually involved with uncertainties. The evidence theory has a
strong ability in uncertainty characterization because of its poten-
tial to handle both aleatory and epistemic uncertainties. From the
overall perspective, some inspiring progresses have been made for
structural uncertainty analysis and reliability-based design with
evidence theory. However, the evidence-theory-based acoustic
radiation problem has not been researched yet. Based on the
characteristics of acoustic radiation system, an efficient evidence-
theory-based analysis method is proposed in this paper for the
response prediction of exterior acoustic fields with epistemic
uncertainty.

The remainder of this paper is organized as follows. The funda-
mentals of evidence theory are introduced in Section 2. In Section 3,
the equilibrium equation for exterior acoustic field prediction is
established. In Section 4, an efficient analysis method to predict the
response of exterior acoustic field with epistemic uncertainty is
proposed. Two numerical examples are investigated in Section 5 and
some conclusions are given in Section 6.

2. Evidence theory

2.1. Fundamentals of evidence theory

Evidence theory, also called as the Dempster–Shafer theory [20],
was firstly proposed by Dempster and further developed by Shafer.
The main concept of evidence theory is that our knowledge on a
given problem can be inherently imprecise. Thus, an interval
consisted of belief and plausibility is used to treat the uncertainty
of the system response.

Evidence theory starts by defining a frame of discernment (FD),
which consists of a set of mutually exclusive elementary proposi-
tions, and it can be viewed as a finite sample space in probability
theory. For example, if a FD is given as Θ¼{x1, x2, x3}, then x1, x2
and x3 are mutually exclusive elementary propositions. 2Θ is
defined to denote the power set of Θ, which also indicate all the
possible subset propositions of Θ and can be illustrated as follows

2Θ ¼ ∅; x1f g; x2f g; x3f g; x1; x2f g; x1; x3f g; x2; x3f g; x1; x2; x3f gf g ð1Þ

In evidence theory, the probability is assigned not only to a
single event but also to any subset of possible events, and this is
one of the big differences between evidence theory and prob-
ability theory. As the most important concept in evidence theory,
the basic probability assignment (BPA) expresses the degree of
belief for a proposition. The BPA is assigned by making use of a
mapping function m: 2Θ-[0, 1], which should satisfy the follow-
ing three axioms

Axioms 1 : mðAÞZ0 for any AA2Θ

Axioms 2 : mð∅Þ ¼ 0
Axioms 3 : ∑

AA2Θ

mðAÞ ¼ 1

wherem(A) denotes the BPA corresponding to the event A, and the
subset A satisfying m(A)40 is called as focal element.

Sometimes the available evidence may come from independent
sources or experts, and evidences of this style can be combined by
using existing rules. For two BPAs m1(B) and m2(C), the combined
evidence can be calculated by the Dempster’ rule of combing [21].

mðAÞ ¼∑B\C ¼ Am1 Bð Þm2 Cð Þ
1�K

for Aa0 ð2Þ

where

K ¼ ∑
B\C ¼ ∅

m1 Bð Þm2 Cð Þ ð3Þ

In the above equation, K denotes the total conflict between two
independent sources or experts. The Dempster’ rule of combing
filters out any conflicts or contradictions among the provided
evidences. And it is usually appropriate for the evidence with
relatively small amounts of conflict.

Due to the lack of knowledge or information, evidence theory
cannot provide a precise value for a proposition A as in the
probability theory. Therefore, it seems reasonable to use two
measures, namely belief and plausibility, to quantify the lower
and upper bounds of the precise probability. The two bounds of
the interval [Bel(A), Pl(A)] are defined as following

Bel Að Þ ¼ ∑
CDA

mðCÞ

Pl Að Þ ¼ ∑
C \Aa∅

mðCÞ ð4Þ

where Bel(A) is obtained by summing the BPAs of propositions
which are totally included in A as a measure of belief, and Pl(A) is
the summation of BPAs of propositions which are totally or
partially include in A as a measure of plausibility.

2.2. Moments of a function with evidence variables

Considering a general function with q-dimensional indepen-
dent variables

Y ¼ g Að Þ; Ai ¼ 1;2…q ð5Þ
Similar to the joint PDF in probability theory, the joint frame of

discernment S can be defined using the following Cartesian
product

S¼ A1 � A2 �⋯� An ¼ sk ¼ a1; a2;…; an½ �; ajAAj; j¼ 1;2;…; q
� � ð6Þ

where sk denotes the focal element of the joint FD and aj denotes
the focal element of the jth evidence variable. Then a joint BPA can
be defined as

msðskÞ ¼
∏
n

i ¼ 1
mðajÞ

0 otherwise

8><
>: ð7Þ

In the probability theory, distribution function can provide the
entire statistical information of a random variable, and moments
are employed to quantitatively measure the characteristics of a
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