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a b s t r a c t

A cell-based smoothed radial point interpolation method (CS-RPIM) is formulated for three-dimensional
elasticity problems. In present method, the problem domain is firstly discretized by tetrahedron
background cells, and each tetrahedron cell is then further divided into several smoothing cells. The
displacement field function is approximated using RPIM shape functions which have Kronecker delta
function property. Supporting node selection for shape function construction uses the efficient T2L-
scheme associated with the background cells. The smoothed Galerkin weak form is employed to create
discretized system equations, and then the gradient smoothing operation is adopted to construct
smoothed strain fields in every smoothing cell. Numerical examples are used to examine the present
method in terms of accuracy, convergence, and efficiency. Compared with the finite element method
using linear interpolation and node-based smoothed finite element method, the CS-RPIM solutions can
achieve better efficiency, higher accuracy, and greater stability in static and free vibration analysis in
presented examples.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mesh-free methods have been proposed and achieve remark-
able progress in recent years, including smooth particle hydro-
dynamics [1,2], diffuse element method (DEM) [3], element free
Galerkin (EFG) method [4], reproducing kernel particle method
(RKPM) [5], finite point method (FPM) [6], meshless local Petrov–
Galerkin (MLPG) method [7] et al.

The radial point interpolation method (RPIM) is a mesh-free
method based on Galerkin weak form. In this method, the shape
functions are constructed using simple interpolation through a set
of nodes located in a local support domain. For different basis
functions adopted, two types of PIM have been developed, i.e.
polynomial PIM using polynomial basis functions [8–10] and radial
PIM (RPIM) using radial basis functions [11–13]. The RPIM shape
functions created using local irregular nodes are preferred in many
ways, because (1) they have the Kronecker delta function property,
which allows the straightforward imposition of essential boundary
conditions and (2) very irregularity distributed nodes can be used.

The RPIM has been studied and developed by various means
[14–16] and have been applied in various problems [17,18].
Recently, a scheme of cell-based smoothed solution has been

proposed by Liu [19] by incorporating meshfree techniques with
the standard FEM, and then it has been referenced and applied
into meshfree areas [20,21]. In [21], CS-RPIM has been formulated
for 2-D elastic problems and shows good performance.

In this paper, the CS-RPIM is extended for 3-D problems. In this
method, a background cell of four-node tetrahedrons is employed
and shape functions are constructed using linear polynomials, as
tetrahedrons can be created by standard routines automatically for
3-D solids. Each background cell is then further divided into
several smoothing domains, in which the gradient strain smooth-
ing technique is adopted to construct smoothed strain fields.
Therefore, the integration to compose stiffness matrix contains
only shape functions instead of shape function gradients. To
examine the performance of the proposed method, a series of
benchmark examples is presented, and excellent results are
obtained demonstrating the efficiency and accuracy of the present
CS-RPIM schemes.

2. Theoretical basis

2.1. Radial point interpolation method

The radial point interpolation method is a series representation
for meshfree function approximation using a set of arbitrarily
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distributed nodes inside a local support of an interested point. In
the present formulation, the problem domain is firstly discretized
with some scattered nodes, and then the background local sup-
ports are constructed using the tetrahedral mesh. Consider a
function u(x) defined in a 3D problem domain Ω. The function
can be approximated in a local support domain of the point of
interest x with a set of arbitrarily distributed nodes using radial
basis function Ri(x) augmented with polynomial basis function
Pj(x).

u xð Þ ¼ ∑
n

i ¼ 1
Ri xð Þaiþ ∑

m

j ¼ 1
Pj xð Þbj ¼ RΤ xð ÞaþPΤ xð Þb ð1Þ

where ai is the unknown coefficient for function Ri xð Þ, bj the
coefficient for Pj xð Þ, n the number of RBFs and is also identical to
the number of nodes in the local support domain of the point of
interest x, and m determined according to the polynomial basis
selected. When m¼ 0, pure RBFs are used. Otherwise, the RBF is
augmented with m terms of polynomial basis functions. In the
present work, the multiquadrics RBF (MQ-RBF) [12,22] is used,
which has the following form:

Ri xð Þ ¼ ½ x�xið Þ2þ y�yi
� �2þ z�zið Þ2þ αcdcð Þ2�q ð2Þ

where q and αc are two shape parameters, which are real and
arbitrary and have been examined in detail by Liu [9,12], dc is the
equivalent length of the background cell.

In order to determine the constants ai and bj, Eq. (1) is enforced
to be satisfied at these n nodes in the local support domain, which
leads to a set of n equations. The matrix form of these equations
can be expressed as

Us ¼ RqaþPmb ð3Þ

where the vector of function values Us is

Us ¼ u1 u2 ⋯ un
� �Τ ð4Þ

Rq is the moment matrix of RBFs which can be expressed as

Rq ¼

R1 x1ð Þ R2 x1ð Þ ⋯ Rn x1ð Þ
R1 x2ð Þ R2 x2ð Þ ⋯ Rn x2ð Þ

⋮ ⋮ ⋮ ⋮
R1 xnð Þ R2 xnð Þ ⋯ Rn xnð Þ

2
66664

3
77775
n�n

ð5Þ

and the polynomial moment matrix Pm is

Pm ¼

p1 x1ð Þ p2 x1ð Þ ⋯ pm x1ð Þ
p1 x2ð Þ p2 x2ð Þ ⋯ pm x2ð Þ

⋮ ⋮ ⋮ ⋮
p1 xnð Þ p2 xnð Þ ⋯ pm xnð Þ

2
66664

3
77775
n�m

ð6Þ

The vectors of unknown coefficients have the following form

aΤ ¼ a1 a2 ⋯ an
� � ð7Þ

bΤ ¼ b1 b2 ⋯ bn
� � ð8Þ

Since there are nþmð Þ unknowns in Eq. (3), so m additional
equations need to be added using the following constraint condi-
tions [23]

∑
n

i ¼ 1
pj xið Þai ¼ PΤma¼ 0; j¼ 1;2;…;m ð9Þ

Combining Eqs. (3) and (9) yields the following set of equations
in the matrix form

~Us ¼
Us

0

� �
¼

Rq Pm

PΤm 0

" #
a
b

� �
¼ G

a
b

� �
ð10Þ

Solving Eq. (10) yields

a
b

� �
¼ G�1 ~Us ð11Þ

So the field variable u xð Þ can be expressed as

u xð Þ ¼ RΤ
q xð Þ PΤm xð Þ

h i
G�1 ~Us ¼ ~Φ ~Us ð12Þ

where

~Φ xð Þ ¼ RΤ
q xð Þ PΤm xð Þ

h i
G�1 ¼ φ1 xð Þ ⋯ φn xð Þ φnþ1 xð Þ ⋯ φnþm xð Þ

n o
ð13Þ

Finally, the RPIM shape functions Φ xð Þ are obtained as

ΦΤ xð Þ ¼ φ1 xð Þ φ2 xð Þ ⋯ φn xð Þ
n o

ð14Þ

An approximation in Eq. (12) can be rewritten as

u xð Þ ¼ΦΤ xð ÞUs ¼ ∑
n

k ¼ 1
φkuk ð15Þ

The present shape function possess the reproducing properties
due to the addition of polynomial basis, also satisfy the delta
function properties, and always exist because of the adoption
of RBFs.

2.2. Global weak form for three dimensional solids

Consider a 3-D solid mechanics problem defined in domain Ω
bounded by Γ, which can be expressed by the following equation
[24]

LTσþb¼ 0 in Ω ð16Þ

u¼ u on Γu ð17Þ

σUn¼ t on Γt ð18Þ
where L is a differential operator in the following form

LT ¼

∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x

2
664

3
775 ð19Þ

σT ¼ σxx σyy σzz σxy σyz σzx

n o
is the stress vector,

bT ¼ bx by bz
n o

is the body force vector; u is the displacement
vector, and u is the prescribed displacement on the essential
boundaries; t is the prescribed traction on the natural boundaries,
and n is the vector of unit outward normal.

The standard Galerkin weak form can be expressed asZ
Ω

Lδu
� �T DLuð ÞdΩ�

Z
Ω
δuTbdΩ�

Z
Γt

δuTtdΓ ¼ 0 ð20Þ

where D is the matrix of material constants.
Substituting Eq. (1) into Eq. (20), the discretized system

equation can be expressed in the following matrix form

Kd¼ f ð21Þ
where

Kij ¼
Z
Ω
BT
i DBjdΩ; i; j¼ 1;…;Nnodeð Þ ð22Þ

d¼ u1 v1 w1 ⋯ uNnode
vNnode

wNnode

n oT
ð23Þ

f i ¼
Z
Ω
φibdΩþ

Z
Γt

φitdΓ; i¼ 1;…;Nnodeð Þ ð24Þ

where Nnode is the number of nodes in analysis, ϕi denotes the
shape function and Bi can be given as
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