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a b s t r a c t

Two different direct boundary element methods are used to solve an interior Dirichlet problem for the Navier
equations describing the plane strain deformation of a thin plate on an elastic foundation. One method uses
dual reciprocity with the Kelvin fundamental solution. The other method develops a fundamental solution
that takes into account the effective load term resulting from the elastic foundation. Both methods, related
topics, and tradeoffs are described. Test problems and a numerical convergence study are included.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider two boundary element methods for solving
the system of partial differential equations describing an interior
Dirichlet problem for the plane strain deformation of a thin plate
on an elastic foundation. In Section 2 the boundary element
equations for plane strain are briefly reviewed. Section 3 presents
the dual reciprocity equations for the plane strain deformation of a
thin plate on an elastic foundation, extending the basic method as
illustrated in [1] to the case of interest in which the load term
involves the unknown. Section 4 contrasts the material in Section 3
with a new boundary integral method in which a fundamental
solution involving Bessel functions is developed. This development
can be compared with that in [2], in which the scalar Helmholtz
problem is considered.

Two numerical examples and a numerical convergence study are
presented in Section 5. Comparisons of the two methods introduced
in the previous sections are summarized in Section 6, and in Section 7
results are reviewed.

2. Boundary element equations for plane strain

We follow the notation and presentation in [3, Section 6.2.1],
which is summarized here for completeness. Cartesian tensor
notation (Einstein summation notation) is used, so that a repeated

letter subscript in an equation implies summation, and differen-
tiation is denoted by commas.

The system of plane strain equations for a linear, homogeneous,
isotropic material, expressed in terms of the displacement com-
ponents (Navier equations) is

Guj;kkþ
G

1�2ν
uk;kj ¼ bj; ð1Þ

and the surface traction is given by

2Gν
1�2ν

uk;kniþGðui;jþuj;iÞnj ¼ pi;

where i; j; k¼ 1;2; ν is Poisson0s ratio; G is the shear modulus;
ui are the displacement components; pi are the surface traction
components; and bi are the load components.

The boundary element equations are obtained using a method
of weighted residuals in which the weighting function is chosen to
be un, the Kelvin fundamental solution for (1). Quantities asso-
ciated with the fundamental solution are indicated with an
asterisk superscript. The fundamental solution satisfies

Gun

lj;kkðrÞþ
G

1�2ν
un

lk;kjðrÞ ¼ �δljδðrÞ ð2Þ

where j; k; l¼ 1;2; δlj is the Kronecker delta; r is the distance
between the load and field points; and δðrÞ is the Dirac delta
(generalized) function expressed as a function of r. The funda-
mental solution and the fundamental surface traction have com-
ponents, respectively,

un

k ¼ un

1kþun

2k; ð3Þ

pn

k ¼ pn

1kþpn

2k; ð4Þ
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for k¼ 1;2. The double subscripts in (3) and (4) use the first
subscript for the direction of the Dirac delta function load and the
second subscript for the direction of the resulting displacement
or surface traction at a field point. The plane strain fundamen-
tal solution and fundamental surface traction components are,
respectively,

un

ij ¼
1

8πð1�νÞG ð3�4νÞδij ln
1
r

� �
þr;ir;j

� �
; ð5Þ

pn

ij ¼
�1

4πð1�νÞr

�
½ð1�2νÞδijþ2r;ir;j�:

∂r
∂n

�ð1�2νÞðr;inj�r;jniÞ
�
; ð6Þ

where i; j¼ 1;2, and n¼ ðn1;n2Þ is the unit outward normal vector
on the boundary [1, p. 268, Eq. 10c], [3, p. 227, Eq. 6.23], [4, p. 444,
Eq. B.82], [5, p. 164, Eq. 6.28].

For this Dirichlet problem there are two basic unknown quan-
tities: the surface traction and the interior displacement. The surface
traction can be determined first. The surface traction is then used to
obtain the interior displacement. To determine the surface traction,
Eq. (1) is multiplied by the fundamental solution, un, and integrated
over the two-dimensional domain. Green0s second identity is used,
and the boundary integral involving the Dirac delta function from
(2) is simplified. The two displacement components evaluated at a
load point, xi ¼ ðxi1; xi2Þ are described by the Somigliana equations,

cilku
i
k ¼

Z
Γ
uni
lkpk dΓ�

Z
Γ
pni
lkuk dΓ�

Z
Ω
uni
lkbk da; ð7Þ

where l; k¼ 1;2; dΓ is the differential element of arc length; and da
is the differential element of area. The domain is Ω and its boundary
is Γ. If the evaluation (load) point xi is a smooth boundary point,
then cilk ¼ 1

2 δlk. If xi is an interior boundary point, then cilk ¼ δlk.
In matrix-vector form, (7) becomes

ciui ¼
Z
Γ
unip dΓ�

Z
Γ
pniu dΓ�

Z
Ω
unib da;

with

u¼
u1

u2

 !
; p¼

p1
p2

 !
; b¼

b1
b2

 !
;

and

uni ¼
uni
11 uni

12

uni
21 uni

22

 !
; pni ¼

pni
11 pni

12

pni
21 pni

22

 !
:

The vector-valued functions u and p are discretized so that

ciui ¼ ∑
N

j ¼ 1

Z
Γj

uniϕT dΓ

 !
pn� ∑

N

j ¼ 1

Z
Γj

pniϕT dΓ

 !
un�

Z
Ω
unib da;

where the jth boundary element is Γj, j¼ 1;2;…N, and N is the
number of boundary elements. The basis function matrix for
discretizing the boundary displacement and surface traction is

ϕT ¼
ϕ1 0 ϕ2 0 ϕ3 0 ⋯ ϕN 0
0 ϕ1 0 ϕ2 0 ϕ3 ⋯ 0 ϕN

 !
;

where ϕi, i¼ 1;…;N, is the ith basis (interpolation) function. For
the cases in which piecewise constant or piecewise linear basis
functions are used, the number of basis functions equals the
number of boundary elements. Solely for convenience in notation,
we restrict attention to these cases. The vectors un and pn are the
nodal boundary displacement and nodal surface traction, respec-
tively (the lower case n superscript indicates nodal quantities),

un ¼ ðu1
1;u

1
2;u

2
1;u

2
2;…uN

1 ;u
N
2 ÞT ;

pn ¼ ðp11; p12; p21; p22;…pN1 ; p
N
2 ÞT ;

where uj
i is the jth displacement component at the ith boundary

node; i¼ 1;2;…;N; j¼ 1;2; and similarly for the surface traction.
The nodes are selected to be at smooth boundary points.

Collocating at each of the load points (boundary nodes), a linear
system of 2N equations in 2N unknown nodal surface traction
components is obtained. The linear system can be expressed as

Gpn ¼Hunþ
Z
Ω
un1b daþ⋯þ

Z
Ω
unNb da

� �T

; ð8Þ

in which the free (displacement) term coefficients of 1=2 have been
incorporated into the main diagonal of the H matrix. The entries of
matrix H¼ ðhijÞ are

hij ¼
Z
Γ

pni
11 pni

12

pni
21 pni

22

 !
ϕj 0
0 ϕj

 !
dΓ; if ia j;

and

hii ¼
Z
Γ

pni
11 pni

12

pni
21 pni

22

 !
ϕi 0
0 ϕi

 !
dΓþ1

2
I2;

where I2 is the 2�2 identity matrix. The entries of matrix G¼ ðgijÞ
are

gij ¼
Z
Γ

uni
11 uni

12

uni
21 uni

22

 !
ϕj 0
0 ϕj

 !
dΓ;

where i; j¼ 1;…N. The indices i and j refer, respectively, to the ith
collocation point and to the jth boundary integration region (that
part of the boundary on which ϕja0). The integrands are locally
non-zero, each hij or gij integration yielding a nonzero result only
from boundary elements containing node j.

Since the right-hand side of (8) is a known quantity, that
equation can be solved for the unknown nodal surface tractions.
Once the surface traction is known (7), collocated at an interior
point xi, can be solved for the interior displacements.

3. Dual reciprocity with the Kelvin fundamental solution
applied to the plane strain deformation of a thin plate
on an elastic foundation

We now consider the transformation of the domain integral in
(7) into an equivalent boundary integral expression. Continuing
as in Section 2, material from [3, Section 6.2.1] is summarized
here for completeness, and notation from that source is followed
closely. The problem of interest is that of the plane strain
deformation of a thin plate on an elastic foundation, described
by (1) with bj ¼ kuj,

Guj;llþ
G

1�2ν
ul;lj ¼ kuj; ð9Þ

where j; l¼ 1;2, and k is a positive constant that accounts for the
elastic foundation on which the plate rests. This system can be
solved using the boundary element method in more than one way.
The first method to be addressed is the dual reciprocity method.

In the dual reciprocity method, the load term, b, is approxi-
mated by a linear combination of load basis functions, fj,

bk � ∑
Nþ L

j ¼ 1
f jαjk; ð10Þ

where k¼ 1;2; N is the number of boundary nodes; L is the
number of interior nodes; and αjk is an unknown coefficient. Each
load basis function, fj, is specifically chosen so that it has a known
(i.e., easily determined) associated particular solution, ûj, satisfying

Gûj
km;llþ

G
1�2ν

ûj
kl;lm ¼ δkmf

j;
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