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a b s t r a c t

In this note, we revisit the issue of ill-conditioning of the method of fundamental solutions (MFS) which
was reported by Chen et al. (Eng Anal Bound Elem 30:2006;405–10). Singular value decomposition (SVD)
was original proposed by Ramachandran (Commun Numer Methods Eng 18:2002;789–801) to overcome
the ill-conditioning of the MFS. The proposed SVD approach given by Ramachandran was somehow
contradicted by the results obtained by Chen et al. which stated that Gaussian elimination is a better
solver than SVD for non-noisy boundary conditions. For illustration, we provide counter examples to
show that the truncated SVD is essential for irregular boundary data and non-smooth domains.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The method of fundamental solutions (MFS) was first proposed
by Kupradze and Aleksidze [10] in 1964 for solving certain boundary
value problems. The MFS started gaining attention after its numer-
ical implementation was proposed by Mathon and Johnston [12] in
1977. In the 1980s, Fairweather and Karageorghis [5] extensively
implemented the MFS numerically for solving various types of
elliptic boundary value problems. In the 1990s, Golberg and
Chen [9] extended the MFS for solving nonhomogeneous problems
through the use of radial basis functions and later further extended
it to time-dependent problems [2]. Since then, the MFS has re-
emerged and attracted great attention in the science and engineer-
ing community [6,7]. Three review papers [3,5,8], a series of
conferences/workshops, and journal special issues have been speci-
fically dedicated to the development of the MFS.

The major attractions of the MFS are its simplicity and effec-
tiveness for numerically solving various types of partial differential
equations. On the negative side, an issue is the poor conditioning
of the resultant matrix of the MFS. For an analytic boundary shape
and analytic data, this ill-conditioning has little effect on the
accuracy of the method. However, in some cases the stability of
the MFS has become an issue. To alleviate the ill-conditioning

problem, Ramachandran [14] proposed the use of singular value
decomposition (SVD). Chen et al. in [1] re-examined some results
in [14] and contradicted the conclusion that the SVD is more stable
than Gaussian elimination. However, we must stress that the
authors in [1] only consider the most ideal cases of sufficiently
smooth boundary conditions and boundary geometries. Hence, the
assumptions made in [1] were not realistic. Schaback [15] has
specifically pointed out that one will always obtain a near perfect
solution regardless of the boundary shape when the boundary
conditions are generated by an exact harmonic solution. He has
further indicated that when the boundary conditions are not
harmonic, the rate of convergence of the approximation of the
boundary values by harmonic polynomials can be very poor.
To avoid confusion, through the rest of this paper we would like
to specify that “non-harmonic boundary data” will mean that the
solution does not have a harmonic extension to the whole plane.
The remark “the MFS makes sense only if the boundary data come
from a non-harmonic function or if there is no harmonic extension
of the solution without singularities close to the boundary” given
by Schaback [15] seems not to be known by most researchers and
practitioners. In [4], the authors have verified the above statement
by testing the harmonic and non-harmonic boundary data on the
circle and the square. Based on the results presented in [4,15], it is
expected that the MFS would perform flawlessly in [1] irrespective
of the boundary data, shape and the matrix solver. Inspired by the
results shown in [4,15], it is the purpose of this note to re-examine
the use of the matrix solvers for irregular boundary data and non-
smooth boundary shape in the context of the MFS for solving the
Laplace equation. Some concluding remarks are placed in the last
section.
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2. The method of fundamental solutions

In this note, we will re-examine the issue of using different
solvers mentioned in [1,14]. Since the results in this paper can be
easily extended to other differential operators and boundary
conditions, for simplicity we will focus on the Laplace equation
with Dirichlet boundary conditions

Δuðx; yÞ ¼ 0; ðx; yÞAΩ; ð1Þ

uðx; yÞ ¼ gðx; yÞ; ðx; yÞA∂Ω; ð2Þ
where Δ is the Laplacian, ∂Ω the boundary of the domainΩ, and g
a given function.

For more details regarding the numerical implementation
of the MFS, we refer readers to [1,14]. Here we only give a
brief review of the MFS. The approximate solution û of (1)–(2) is
given by

ûðx; yÞ ¼ ∑
N

i ¼ 1
cilog J ðx; yÞ�ðsi; tiÞJ ; ðx; yÞAΩ; ð3Þ

where fðsi; tiÞgN1 are source points on the fictitious boundary
located outside the domain Ω and J � J is the Euclidean norm.
Let fðxi; yiÞgN1 be N collocation points on the boundary. Then, the
coefficients fcigN1 are chosen so that (3) satisfies the boundary
condition in (2); i.e.,

∑
N

i ¼ 1
cilog J ðxj; yjÞ�ðsi; tiÞJ ¼ gðxj; yjÞ; j¼ 1;2;…;N: ð4Þ

The above equations form a system of N�N equations. In the MFS
literature, it is known that the interpolation matrix is dense and
ill-conditioned. How to solve (4) accurately and stably has been
the subject of intensive research. Following the comments of
Schaback [15], we will provide further numerical evidence in the
next section to clarify the issue of ill-conditioning of the MFS using
different matrix solvers as shown in [1,14].

3. Computational tests

In this section, we present numerical examples of the Laplace
equation which includes non-harmonic Dirichlet boundary condi-
tions on smooth and non-smooth boundaries. As mentioned
in [4], poor results are achieved only when the boundary data
are generated from a non-harmonic function so that the solution
does not have a harmonic extension in R2.

Due to the maximum principle [13], the true solution u and the
approximate solution û satisfy the error bound

Ju� û J1;Ωr Ju� û J1;∂Ω: ð5Þ

This means that the maximum error occurs on the boundary.
Hence, we only need to choose the test points on the boundary for
the evaluation of the absolute maximum error. The source points
are uniformly distributed on a fictitious circle with center at the
origin and radius r. The collocation points are also uniformly
located on the physical boundary.

In the numerical implementation, for simplicity we only
consider Dirichlet boundary condition. We consider the following
Dirichlet boundary condition which is a non-harmonic polyno-
mial:

gðx; yÞ ¼ x2y3: ð6Þ

All the numerical computations in this section are performed
using MATLAB. In the legend of all figures in this section, we
denote GE as the Gaussian elimination and TSVD as truncated
singular value decomposition. For SVD, the given interpolation
matrix A can be decomposed as

A¼UΣVT

where U and V are orthogonal matrices and Σ is a diagonal matrix
with diagonal elements

s1Zs2Z⋯Z0:

The tolerance of the truncation of TSVD is taken as tol¼
maxðsizeðAÞÞnmaxðΣÞnɛ where ɛ is the machine epsilon. This is
based on the Moore–Penrose pseudoinverse. The MATLAB function
pinv is equivalent to TSVD with truncation tolerance mentioned
above.

To illustrate the impact of the boundary shape, we consider
two smooth and two non-smooth boundaries. For the smooth
boundary, we consider symmetric Cassini and un-symmetric
amoeba-like boundary shapes. The parametric equations of these
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Fig. 1. Profiles of Cassini (left) and amoeba-like (right) boundaries.
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Fig. 2. Profile of L-shape boundary.
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