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a b s t r a c t

The scaled boundary finite element method (SBFEM) is a semi-analytical method, whose versatility,
accuracy and efficiency are not only equal to, but potentially better than the finite element method and
the boundary element method for certain problems. This paper investigates the possibility of using
Fourier shape functions in the SBFEM to form the approximation in the circumferential direction. The
shape functions effectively form a Fourier series expansion in the circumferential direction, and are
augmented by additional linear shape functions. The proposed method is evaluated by solving three
elastostatic and steady-state heat transfer problems. The accuracy and convergence of the proposed
method is demonstrated, and the performance is found to be better than using polynomial elements or
using an element-free Galerkin approximation for the circumferential approximation in the scaled
boundary method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The scaled boundary method (SBM) is a semi-analytical method
developed relatively recently by Wolf and Song [1]. The method
introduces a normalised radial coordinate system based on a scaling
centre and a defining curve (usually taken as the boundary). The
governing deferential equations are weakened in the circumferential
direction and then solved analytically in the normalised radial direc-
tion. The SBM has combined the advantages of the Finite Element
Method (FEM) and the Boundary Element Method (BEM), and no
fundamental solution is required like BEM. In addition, the SBM has
been shown to be more efficient than the FEM for problems involving
unbounded domains and for problems involving stress singularities
or discontinuities [2]. Effective applications of this method have been
demonstrated in various problem domains, including fracture pro-
blems [3–6] and foundation problems [7–10].

In the scaled boundary method, the discretisation approach
used in the circumferential direction has significant influence on
the accuracy of the resulting solutions [11]. The most commonly
used method for performing this circumferential discretisation is
the finite element approach, leading to the method called the
scaled boundary finite element method (SBFEM). Vu and Deeks
[12–14] investigated the use of higher-order polynomial shape
functions in the SBFEM, and demonstrated the SBFEM converged
significantly faster under p-refinement than under h-refinement.

The development of meshless methods provided another approach
to building circumferential approximations for the scaled boundary
method. Deeks and Augarde [11] developed a Meshless Local
Petrov–Galerkin method scaled boundary method (MLPG-SBM)
and He et al. [15] developed an Element-free Galerkin scaled
boundary method (EFG-SBM). This work showed that these two
meshless scaled boundary methods gave a higher level of accuracy
and rate of convergence than the conventional SBFEM using linear
or quadratic elements, with the EFG-SBM performing slightly better
than the MLPG-SBM.

In this paper, the possibility of using shape functions based on the
terms of a Fourier series for the circumferential approximation of the
SBFEM is investigated. Fourier interpolations containing trigonometric
functions have been applied to both the finite element method (FEM)
and the boundary element method (BEM). For example, Guan et al.
[16] developed a Fourier series based FEM into for the analysis of tube
hydroforming, and showed that this Fourier shape function reduced
the number of degrees of freedom required. Khaji et al. [17,18] applied
Fourier radial basis functions into the BEM, and showed that of the
resulting BEM is much more accurate than the BEM using classic
Lagrange shape functions. Although the advantages of Fourier based
FEM and BEM have been illustrated in previous work, to date there has
been no work reported on the use of Fourier shape functions in
the SBFEM.

A new Fourier-based scaled boundary method (F-SBM) is pre-
sented in this paper. A set of shape functions based on Fourier series
expansion is derived, and augmented with linear shape functions. The
new shape functions provide good approximation to both trigono-
metric and polynomial functions in the circumferential direction of the
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scaled boundary system. In three numerical examples, the F-SBM is
used to solve two-dimensional elastostatic and steady-state heat
transfer problems. The accuracy and convergence of F-SBM is com-
pared with the conventional SBFEM using both linear and quadratic
elements and with the EFG-SBM. Superior performance in terms of
both accuracy and convergence is demonstrated.

This paper is organised as follows: The basic equations of scaled
boundary method are given in Section 2. Section 3 introduces the
Fourier shape functions for use in the scaled boundary method.
Three example problems are presented in Section 4 to verify the
effectiveness of proposed method, and the paper draws conclu-
sions at the end.

2. The scaled boundary method

The scaled boundary method introduces a normalised radial
coordinate system by scaling a defining curve (usually the domain
boundary or a part of the domain boundary) relative to a scaling
centre ðx0; y0Þ selected within the domain or at the intersection
of two straight sections of the boundary (Fig. 1). The normalised
radial coordinate ξ runs from the scaling centre towards the
defining curve, and has values of zero at the scaling centre and
unity at the defining curve. The other circumferential coordinate s
specifies a distance around the defining curve from an origin on
the curve. The scaled boundary and Cartesian coordinate systems
are related by the scaling equations

x¼ x0þξxsðsÞ ð1Þ

y¼ y0þξysðsÞ ð2Þ
Displacement and stress components are retained in the

original Cartesian coordinate directions, while position is specified
in terms of the scaled boundary coordinates. An approximate
solution is sought in the form

fuhðξ; sÞg ¼ ∑
n

i ¼ 1
½NiðsÞ�uhiðξÞ ¼ ½NðsÞ�fuhðξÞg ð3Þ

This represents a discretisation of the part of the boundary
located at ξ¼ 1 with the shape function [N(s)]. The unknown
vector fuhðξÞg is a set of n functions analytical in ξ. The shape
functions apply for all lines with a constant ξ. (If the scaling centre
lies on the boundary, as in Fig. 1, the straight portions of the
boundary adjacent to the scaling centre and representing radial
lines are not discretised, and in the solution process an analytical
solution is found along these lines.)

Mapping the linear operator to the scaled boundary coordinate
system using standard methods

½L� ¼ ½L1� ∂
∂x

þ½L2� ∂
∂y

¼ ½b1ðsÞ� ∂
∂ξ

þ1
ξ
½b2ðsÞ� ∂

∂s
ð4Þ

where ½b1ðsÞ� and ½b2ðsÞ� are dependent only on the boundary
definition.

The stresses are obtained by multiplying the strains (obtained
form the displacement field using the linear operator) by the
elasticity matrix ½D� in the form

sðξ; sÞ� �¼ ½D� εðξ; sÞ� �¼ ½D�½B1ðsÞ�fuðξÞg;ξþ
1
ξ
½D�½B2ðsÞ� uhðξÞ

� � ð5Þ

where

½B1ðsÞ� ¼ ½b1ðsÞ�½NðsÞ� ð6Þ

½B2ðsÞ� ¼ ½b2ðsÞ�½NðsÞ�;s ð7Þ
In this case the virtual work statement becomesZ

V
fδεðξ; sÞgT fshðξ; sÞgdV�

Z
S
fδuðsÞgT ftðsÞgds¼ 0 ð8Þ

where the first term represents the internal work and the second
term the external work, and ftðsÞg is the external force vector.

The virtual strain field is of the form (analogous to Eq. (5))

δεðξ; sÞ� �¼ ½B1ðsÞ�fδuðξÞg;ξþ
1
ξ
½B2ðsÞ� δuðξÞ� � ð9Þ

where fδuðξÞg is virtual displacement and

dV ¼ jJjξdξds ð10Þ
where J

�� �� is the Jacobian at the boundary ðξ¼ 1Þ.
Substituting Eqs. (5), (9) and (10), integrating the area integrals

containing fδuðξÞg;ξ with respect to ξ using Green's Theorem, and
introducing the coefficient matrices

½E0� ¼
Z
S
½B1ðsÞ�T ½D�½B1ðsÞ�jJjds ð11Þ

½E1� ¼
Z
S
½B2ðsÞ�T ½D�½B1ðsÞ�jJjds ð12Þ

½E2� ¼
Z
S
½B2ðsÞ�T ½D�½B2ðsÞ�jJjds ð13Þ

the virtual work equation may be expressed asZ
V
fδεðξ; sÞgT fshðξ; sÞgdV ¼ fδugT ½E0�fuhg;ξþ½E1�fuhg

n o

�
Z 1

0
fδuðξÞgT ½E0�ξfuhðξÞg;ξξþ½½E0�þ½E1�T �½E1��fuhðξÞg;ξ�½E2�1

ξ
uhðξÞ

� �� �
dξ

ð14Þ
On substitution of Eq. (3), the external virtual work term

becomesZ
S
fδuðsÞgT ftðsÞgds¼ fδugT

Z
S
fNðsÞgftðsÞgds ¼ fδugT fPg ð15Þ

Thus the complete virtual work equation becomes

fδugT f½E0�fuhg;ξþ½E1�fuhgg�fδugT fPg

�
Z 1

0
δuðξÞ� �T ½E0�ξfuhðξÞg;ξξþ½½E0�þ½E1�T

n

�½E1��fuhðξÞg;ξ�½E2�1
ξ
fuhðξÞg

�
dξ¼ 0g ð16Þ

In order for Eq. (16) to be satisfied for all fδuðξÞg (implying that
equilibrium it closely satisfied in the radial direction and in the
approximate sense in the circumferential direction), both of the
following conditions must be satisfied.

fPg ¼ ½E0�fuhg;ξþ½E1�T fuhg ð17Þ

½E0�ξ2 uhðξÞ
� �

;ξξ
þ½½E0�þ½E1�T �½E1��ξ uhðξÞ

� �
;ξ
�½E2� uhðξÞ

� �¼ 0f g
ð18Þ

By inspection, solutions to the homogeneous set of Euler–
Cauchy differential equations represented by Eq. (18) must be of

Fig. 1. Bounded domain with side faces showing scaled boundary coordinate
system.

Y. He et al. / Engineering Analysis with Boundary Elements 41 (2014) 152–159 153



Download English Version:

https://daneshyari.com/en/article/512614

Download Persian Version:

https://daneshyari.com/article/512614

Daneshyari.com

https://daneshyari.com/en/article/512614
https://daneshyari.com/article/512614
https://daneshyari.com

