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a b s t r a c t

An alternative scheme to compute the Green’s function and its derivatives for three dimensional

generally anisotropic elastic solids is presented in this paper. These items are essential in the

formulation of the boundary element method (BEM); their evaluation has remained a subject of

interest because of the mathematical complexity. The Green’s function considered here is the one

introduced by Ting and Lee [Q. J. Mech. Appl. Math. 1997; 50: 407–26] which is of real-variable, explicit

form expressed in terms of Stroh’s eigenvalues. It has received attention in BEM only quite recently. By

taking advantage of the periodic nature of the spherical angles when it is expressed in the spherical

coordinate system, it is proposed that this Green’s function be represented by a double Fourier series.

The Fourier coefficients are determined numerically only once for a given anisotropic material; this is

independent of the number of field points in the BEM analysis. Derivatives of the Green’s function can

be performed by direct spatial differentiation of the Fourier series. The resulting formulations are more

concise and simpler than those derived analytically in closed form in previous studies. Numerical

examples are presented to demonstrate the veracity and superior efficiency of the scheme, particularly

when the number of field points is very large, as is typically the case when analyzing practical three

dimensional engineering problems.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

For elastostatics, the fundamental solution, otherwise also
often referred to as the Green’s function, is the solution of the
displacements at a field point due to a unit point load at a source
point in an infinite body. It is denoted by U(x) here, where x¼(x1,
x2, x3) in the Cartesian coordinate system. The availability of U(x)
and its derivatives is a key requirement in the direct formulation
of the boundary element method (BEM), the method of funda-
mental solutions and some other meshless methods. In the
conventional displacement-BEM formulation, the Green’s func-
tion and its first-order derivatives are used in the derivation of the
boundary integral equation (BIE) for the displacements and
tractions on the surface of the domain. Higher order derivatives
are required for evaluating the stresses at interior points of the
body via Somigliana’s identity. These higher order derivatives are
also required in traction-BIE and hypersingular BEM formulations.
For practical three-dimensional problems in elastic stress analy-
sis, the number of evaluations of U(x) and its derivatives is
typically in the order of 106 and higher. Thus, developing an

efficient scheme for the computation of these quantities is very
important for the BEM to be a successful numerical tool for
solving practical engineering problems.

For isotropic elastostatics, the Green’s function and its derivatives
can be expressed in relatively simple explicit forms; the computa-
tional effort to evaluate them has therefore never been a serious
issue. Although this is also the case for 2D anisotropic elasticity, the
same cannot be said for 3D general anisotropic solids due to the
mathematical complexity. Indeed, the numerical evaluation of U(x)
and its derivatives for 3D general anisotropic elasticity has remained
a subject of great interest in the BEM community over the past few
decades. The fundamental solution U(x) for a 3D generally aniso-
tropic solid was first presented in 1947 by Lifschitz and Rozents-
weig [1]. It is expressed as a line integral around a unit circle, the
integrand of which contains the Christoffel matrix defined in terms
of the elastic constants. Numerous attempts have since been made
to analytically evaluate this integral and its derivatives into as
simple and explicit a form as possible, see, e.g., [2–7].

Wilson and Cruse [8] were the first to implement a numerical
formulation of the BEM for 3D stress analysis of a generally
anisotropic solid using the form of U(x) presented in [1]. Their
algorithm involves numerically evaluating the contour integral
and building a large database of the point load solutions and their
derivatives for a given material. In the formation of the linear
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equations when solving the BIE in the BEM formulation, bivariate
cubic spline interpolation of these pre-calculated values is
employed. This approach is computationally quite demanding
and its accuracy for treating highly anisotropic materials has also
been called into question. Since the pioneering work in [8],
several other schemes to evaluate these quantities have been
proposed for the development of the BEM to treat 3D generally
anisotropic solids. Some are more elegant and efficient than
others; they include the perturbation expansion technique, the
dual reciprocity approach, the method of residue calculus, the
Radon transform approach and, more recently, the explicit real
variable algebraic solution scheme. References [9–17] represent a
selection of BEM works using these different approaches; more
extensive reviews are given in [16,17] by the authors, as well as
others in the list. It is perhaps also worth noting that other fast
Green’s function algorithms, although not specific to BEM imple-
mentation nor 3D general anisotropic elasticity, have also been
proposed in the literature. They include the method of Fourier
transforms [18], the divergent series approach [19], the B-spline
and other interpolation schemes of pre-calculated solutions
[20,21].

Among the various forms of U(x) that have been introduced is
one that is real variable, fully explicit and algebraic in form. It was
derived using Stroh’s formalism by Ting and Lee [6] and is
expressed in terms of Stroh’s eigenvalues. Lee [7] subsequently
showed how the derivatives of U(x) may be generated, presenting
them in the form of higher order tensors. These solutions,
however, did not receive much attention in the BEM community
until very recently. Because of their explicit forms, they could be
implemented into, for example, existing BEM codes for 3D
isotropic elastostatics in a relatively direct manner. This was first
carried out by Tavara et al. [15] for the special case of transverse
isotropy, and by the present authors [16,17] for the case of fully
general anisotropy. They were also employed by Buroni and Saez
[22] to treat anisotropic materials exhibiting magneto–electro–
elastic coupling. The BEM implementation reported in [16,17],
although fairly straightforward, revealed the relative inefficiency
of computing the higher order derivatives of U(x) due to the
presence of the very high order tensors. For example, 10th order
tensors are present in the 2nd order derivatives of U(x). This led
Lee [23] to revisit the problem from which it is shown that by
carrying out the differentiation of U(x) in the spherical coordinate
system as an intermediate step instead of direct differentiation
with respect to the Cartesian coordinates, simpler analytical
forms of the derivatives can be obtained that obviates the
introduction of very high order tensors. Using this revised
approach and the residue theorem for high order poles, the
present lead authors derived the 1st and 2nd order derivatives
of U(x) and reported their successful implementation into BEM in
[24–26]. The better computational performance with these
expressions over the previous formulations is also demonstrated
in [25,26]. Although they are as relatively straightforward as
before, these expressions are rather elaborate in form and their
implementation is somewhat tedious and involved. For even
higher order derivatives of U(x) that are required in, for example,
hypersingular BEM formulations, it can be expected that this will
be even more so.

In this paper, an alternative scheme is proposed to numerically
evaluate the explicit form Green’s function of Ting and Lee [6],
and its derivatives. Instead of computing directly the explicit
algebraic expression of U(x) and its derivatives as derived in [6]
and [24], the fundamental solution is first expressed as a double
Fourier series. This is possible by virtue of the periodic nature of
the spherical angles when Ting and Lee’s solution is expressed in
the spherical coordinate system. The Fourier coefficients are
evaluated numerically, and this is done once only for a given

material, independent of the number of field points in the
solution domain. The derivatives of U(x) can be directly obtained
by spatial differentiation on the double Fourier series. This makes
the scheme very efficient and attractive for practical engineering
problems, as the number of field points at which the numerical
values of U(x) and its derivatives are required in the BEM analysis
is typically very large indeed. To demonstrate the veracity and
accuracy of this scheme, the computed Green’s function and its
derivatives for sample points of an anisotropic material are
compared with the results obtained by the other forms of the
same U(x) and its derivatives previously employed in [17], [24].
The numerical efficiency of using the various approaches is also
compared to demonstrate the superior efficiency of the present
scheme. To this end, it is useful to briefly review the fundamental
solution U(x) as derived by Ting and Lee [7], and its derivatives, as
presented in [17] and [24]. This will help to provide a better
perspective of the different schemes as the present Fourier series
approach is introduced.

2. Green’s function of 3D generally anisotropic solids

As mentioned earlier, the Green’s function Uij(P, Q)�U(x) is
defined as the displacement response in the xi-direction at the
field point Q due to a unit load applied in the xj-direction at P in a
homogeneous infinite body. The present approach is to express
the analytically exact and explicit form of the Green’s function
derived by Ting and Lee [6] as a double Fourier series. This
fundamental solution will first be reviewed below.

For a generally anisotropic material, the point load solution for
the displacement field may be written as [1–3]

Uij ¼
1

8p2r

Z 2p

0
Z�1dc, ð1Þ

where r is the radial distance between the source point P at the
local origin x¼0 and the field point Q at x¼(x1, x2, x3). In Eq. (1),
the integral is taken around the unit circle 9nn9¼ 1 on the oblique
plane normal to x as shown in Fig. 1. The unit vector nn on the
oblique plane can be written in terms of an arbitrary parameter c
as follows

nn ¼ n cos cþm sin c, ð2Þ

where the vectors n, m along with x/r form a right-handed triad
½n,m,x=r�. With reference to Fig. 1, the vectors n and m can be

x1

φ

θ

r

x2

x3
m

n

Field Pt. 

Source Pt. 

Fig. 1. The unit circle on an oblique plane at the field point; definition of the unit

vectors m and n.
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