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a b s t r a c t

Within the Symmetric Boundary Element Method, the mixed-value analysis is re-formulated. This

analysis method contemplates the subdivision of the body into substructures having interface

kinematical and mechanical quantities. For each substructure an elasticity equation, connecting

weighted displacements and tractions to nodal displacements and forces of the same interface

boundary and to external action vector, is introduced. The assembly of the substructures is performed

through both the strong and weak regularity conditions of the displacements and tractions. We obtain

the solving equations where the compatibility and the equilibrium are guaranteed in the domain O for

the use of the fundamental solution and at the interface nodes for the strong regularity conditions

imposed, whereas the previous quantities are respected in weighted form along the interface

boundaries. The mixed-value method leads to a better solution than those obtained through the

displacement method of the Symmetric Boundary Element Method, if compared with the analytical

solution.

By using the Karnak.sGbem program, developed with other researchers and updated through the

implementation of the present method, some examples are made which show the advantages related to

the computational aspects and to the convergence of the numerical response.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In all fields of the applied mechanics and engineering the use of analysis methods able to provide solutions closer to the real response,
by using a restricted number of variables, is desirable. Among these, the Symmetric Boundary Element Method (SBEM) is used, which
through its characteristics allows one to reach these goals. Indeed it works using elements having large dimensions characterized only by
boundary quantities and uses fundamental solutions, thus making it possible to have considerable accuracy in the response due to the
satisfaction of the equilibrium and compatibility in the domain. The statical and kinematical conditions are only imposed in weighted
form on the boundary and the quality of the solution depends on the boundary discretization and on the variable modelling.

The analysis regarding bodies having zone-wise different physical characteristics requires particular strategies and only recently were some
difficulties overcome within the substructuring process. This idea of subdividing the bodies into macro-elements having different physical
properties was introduced by Maier et al. [1]. Subsequently, Gray and Paulino [2] utilized substructuring in potential problems. Layton et al. [3]
proposed a formulation which divides the body into macro-zones, each of which is governed by boundary quantities, and which after a
condensation process gives rise to a system having only a few asymmetric blocks. In a subsequent paper the same authors [4] presented a truly
symmetric method for a two-zone elastic problem characterized by interface and non-interface unknowns. Cen et al. [5] developed a multi-zone
approach, where a non-symmetric mixed-variable solving system, having the unknown vector only with interface nodal mechanical and
kinematical quantities, was considered within the cohesive fracture case. Pérez-Gavilán and Aliabadi [6] proposed an approach only having
kinematical variables and showed the non-uniqueness of the solution.

Panzeca et al. [7–11] dealt with the substructuring problem among substructures proceeding in accordance with a variational
formulation proposed by Maier and Polizzotto [12], Polizzotto [13,14] for a single body, reaching an approach having only interface
unknowns among substructures. This strategy led to different approaches defined as a mixed-value method (Panzeca et al. [7,8]) and as a
displacement method (Panzeca et al. [10,11]), both characterized by the employment of strong (nodal quantities) and weak (weighted
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quantities) regularity conditions at the interface and by substantial variable condensation. In the displacement method, implemented in
the Karnak.sGbem code (Cucco et al. [15]), the authors distinguished the substructures into macro-elements having generally large
dimensions and elastic materials and bem-elements having small dimensions where, in the presence of physically nonlinear behaviour,
the possible plastic strains can be evaluated (Zito et al. [16]).

Kallivokas et al. [17] proposed an energy-based variational framework for the solution of interior problems in multiply-connected domains
comprising multiple piecewise homogeneous subdomains, using exclusively boundary integral equations, and provided a unified variational
setting that leads to symmetric Galerkin boundary element formulations in terms of Dirichlet-type variables only. The presence of Neumann-
type boundary unknowns is suppressed through a condensation process at the subdomain level.

Vodicka et al. [18,19] proposed an approach, based on a variational principle, to solve domain decomposition problems by the
symmetric Galerkin boundary element method (DDBVP) between two substructures. Weak coupling conditions of equilibrium and
compatibility at the interface are obtained from the critical point conditions of the energy functional. A natural property of this approach
is its capability to deal with nonconforming discretization along straight and curved interfaces, thus allowing independent meshing of
subdomains to be performed.

Bonnet G. et al. [20] utilized the symmetric BEM to find the boundary stiffness matrix characterizing the response of the discrete
boundary to given Dirichlet boundary conditions within the coupling between BEM and FEM.

The substructuring process was also dealt with within the collocation BEM by Lu and Wu [21], who significantly reduce the size of the
final matrix; Sfantos and Aliabadi [22], who present a sensitivity formulation for contact problems having as unknowns the normal gaps;
Gao et al. [23,24], who in the final system of equations obtain only interface displacements as unknowns; Phan et al. [25], who deal with
a general type of displacement and traction conditions at the interface; Bui et al. [26], who simplify the assembly of the equations arising
from the BEM sub-domain methods reducing the size of the system matrix. Other papers regarding substructuring within the collocation
BEM are included in the related references.

Within symmetric BEM, in this paper, on the basis of a strategy performed by Panzeca et. al. [10], the mixed-value method, proposed
by Panzeca et al. [7,8], is re-formulated through (a) the subdivision of the body by substructures having any shape and dimension, (b) the
writing of an elasticity equation for each substructure connecting weighted quantities (displacements and tractions) to nodal quantities
(displacements and forces) and to the load vector, (c) the use of the equation system through the writing of equilibrium and
compatibility strong forms at the interface nodes and through the related weak forms involving weighted (or generalized) displacements
and tractions at the interface boundary elements. Since the discretization is made at the beginning of the analysis, in the present state of
research the interfaces between adjacent substructures are discretized using conforming meshes with straight boundary elements. The
introduction of nonconforming meshes to deal with particular problems like contact will be the object of a new paper.

The proposed mixed-value method was recently implemented through additional procedures within the Karnak.sGbem program,
already using the displacement method.

Some examples are studied to check the quality of the solution through the comparison of the results with those obtained with the
displacement method based on the same formulation, and, when it is possible, with a closed form response

2. Elastic analysis

A plane bidimensional body of domain O and boundary G, referred to a Cartesian orthogonal co-ordinate system (O,x,y), is subjected
to quasi-static actions in its plane (Fig. 1a): forces f at the portion G2 of the free boundary, displacements u at the portion G1¼G\G2 of the
constrained boundary, and body forces b and volumetric (thermal and plastic) strains W in O.

In this body the physical and geometrical characteristics are step-wise variables. One wants to obtain the elastic response to external
actions in terms of displacements u on G2, reactions f on G1, displacements, strains and stresses in O by using the SBEM, through the
mixed-value formulation.

For this purpose an appropriate subdivision of the domain into substructures is made, in order to have the physical and geometrical
characteristics, constant in each substructure. This subdivision involves the introduction of interface boundaries G0 and the related rise
of traction t0 and displacement u0 distribution vectors (Fig. 1b). For each of the substructures, the Somigliana Identities of the
displacements u and of the tractions t in O can be written as functions of known and unknown actions of the boundary G and of the
domain O.

The latter are written in compact form as follows:

u¼ u ½f�þu ½v�þu ½b,W� ð1aÞ

t¼ t ½f�þt ½v�þt ½b,W� ð1bÞ

where v¼ 0�u is the jump in the displacement between those of the boundary of the complementary domain (null by definition) and
those of the real one. In the previous equations, the following symbolic form was employed like in Polizzotto [13]:

u ½f� ¼
Z
G

Guu f dG u ½v� ¼
Z
G

Gut ðvÞ dG ð2a;bÞ

t ½f� ¼

Z
G

Gtu f dG t ½v� ¼

Z
G

Gtt ðvÞ dG ð2c;dÞ

û ½b,W� ¼
Z
O

Guu b dOþ
Z
O

Gus W dOt̂ ½b,W� ¼
Z
O

Gtu b dOþ
Z
O

Gts W dO ð2e; fÞ
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