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a b s t r a c t

In this paper, a new radial basis function (RBF) is proposed to solve Helmholtz problems in the

traditional collocation method. Since the matrix equation arising from the RBF interpolation is ill-

conditioned, a regularized singular value decomposition method is used to obtain a more accurate

solution. Numerical examples of both direct and inverse problems are presented to demonstrate the

effectiveness and applicability of the proposed RBF versus the traditional multiquadric RBF.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A large variety of RBFs or RBF-based methods have been
proposed. Commonly used RBFs, such as multiquadric (MQ)
[1,2], inverse multiquadric [3], and thin plate spline [4,5], have
been widely studied. The popular RBF-based numerical methods
include the method of fundamental solutions (MFS) [6,7], bound-
ary collocation method [8,9], regularized meshless method
[10,11], radial basis function networks [12,13], radial basis
collocation method [14,15], boundary distributed source method
[16], and boundary knot method (BKM) [17,18], etc. In the past
several decades, the above RBFs or RBF-based methods have been
applied to solve heat transfer problems [19,20], 1D and 2D
nonlinear Burgers’ equation [21,22], shallow water equation for
tide and currents simulation [23], harmonic elastic and viscoe-
lastic problems [24], among others.

The initial development of applying RBFs to solve partial
differential equation began from the pioneering work of Kansa
[25,26], named as Kansa’s method. In this method, RBFs are directly
used as the basis to approximate the solutions by enforcing the
governing equation and boundary conditions on collocation points.
The MQ was first developed by Hardy [27] as a multi-dimensional
scattered interpolation in approximating the gravitational field of
the earth. It was not recognized by most of the researchers until
Franke [28] published a paper in which the accuracy, efficiency,
storage, and the ease of implementation of 29 interpolation
methods were evaluated and MQ was ranked as the overall best.
When applying some RBF-based methods, such as the MFS and
BKM, to non-homogeneous problems [29,30], one needs to resort to

a two-step method. That is to say, one should first approximate the
particular solution by dual reciprocity method or other methodol-
ogies, and then derive the general solution for the corresponding
homogeneous problems. Compared with these numerical methods,
the radial basis collocation method [31–34] is a single-step method
for both homogeneous and non-homogeneous problems. However,
the accuracy of the method is highly sensitive to the choice of RBF.

In this study, a new RBF to be used in the radial basis collocation
method is proposed for the both direct and inverse Helmholtz
problems. It is based on the general solution of Helmholtz equation.
This type of RBF is constructed by a heuristic approach without
rigorous mathematical analysis. To illustrate its effectiveness and
efficiency, several direct and inverse problems are considered. In
the direct problems, the coefficient matrix generated by the new
RBF is often ill-conditioned as those generated by other traditional
RBFs [35,36]. In the inverse problems, we only consider the classical
Cauchy problems in which boundary conditions for both the
solution and its normal derivative are prescribed only on a portion
of the boundary, whilst no information is available on the remain-
ing part. So, we should reconstruct the solution on the unaccessible
boundary and in the domain. The Cauchy problem is much more
difficult to solve both analytically and numerically than the direct
problem, since the solution does not satisfy the general conditions
of well-posedness. The solution is not a continuous function of the
boundary data and a small error in the accessible data may result in
an enormous error in the numerical solution, this kind of problem is
ill-posed [37]. We cannot use direct approach, such as the Gauss
elimination method, in order to solve the system of linear equations
which arises from the discretization of the problem. To handle ill-
conditioned or ill-posed problems, many regularization techniques
have been adopted [37–39]. Here, we extend the new RBF com-
bined with the damped singular value decomposition (DSVD)
regularization technique to Cauchy problems. The generalized cross
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validation (GCV) [37] is one of the strategies to estimate an
appropriate regularization parameter of the DSVD and is employed
in our numerical experiments.

The rest of the paper is organized as follows. In Section 2,
formulations of the direct and inverse problems are briefly
reviewed whereas the new RBF would be introduced. The DSVD
under parameter choice of GCV is described in Section 3. In
Section 4, four numerical examples are employed to study the
accuracy, efficiency, convergence and the numerical conditioning
of or related to the new RBF. Section 5 concludes this study with
some remarks.

2. Problem description and the new radial basis function

2.1. Direct and inverse problems

We consider the following non-homogeneous Helmholtz equa-
tion

r2uðx,yÞþk2uðx,yÞ ¼ f ðx,yÞ in O, ð1Þ

where r2 is the Laplacian, k the wave-number, O represents a
simply connected domain in R2, and f ðx,yÞ the source term.

For direct problems under investigation require solving Eq. (1)
subjected to the following boundary conditions:

uðx,yÞ ¼ gðx,yÞ on G1, ð2Þ

@uðx,yÞ

@n
¼ hðx,yÞ on G2, ð3Þ

where G1 \ G2 ¼ | and G1 [ G2 ¼ @O, @u=@n denotes the outward
normal derivative of u. Lastly, gðx,yÞ and hðx,yÞ are the measured
Dirichlet and Neumann data on boundaries G1 and G2,
respectively.

For Cauchy problems, the boundary condition is not known on
the whole boundary @O

uðx,yÞ ¼ gðx,yÞ on G1, ð4Þ

where G1 is the accessible part of the boundary @O. The governing
equation (1) subjected to only the boundary condition (4) is
mathematically under-determined, and additional data must be
supplied to fully determine it. The additional data available is
given by a boundary condition different from that given by Eq.
(4):

@uðx,yÞ

@n
¼ hðx,yÞ on G1: ð5Þ

Note that in this case, the accessible part of the boundary G1 is
overspecified, since two different types of boundary conditions
are prescribed on it. A necessary condition for the above Cauchy
problem (1), (4) and (5) to be identifiable is that the known
boundary part G1 is larger than the under-specified boundary part
G2 ¼ @O=G1. And in this study, we focus on determining the
underprescribed functions on the inaccessible boundary G2 and
in the solution domain.

2.2. The new radial basis function

At first, general solution of Eq. (1) is as follows:

jðx,xjÞ ¼ J0ðkrÞ, ð6Þ

where J0 denotes the zeroth order Bessel function of the first kind,
r¼ rðx,xjÞ is the Euclidian distance between the general points
x¼ ðx,yÞ and the origin of the RBF xj ¼ ðxj,yjÞ, k the wave-number.
In order to solve the nonhomogeneous problem, we propose the
following radial basis function:

jðx,xjÞ ¼ J0ðkðr
2þC2

Þ
1=2
Þ, ð7Þ

where C is an empirically chosen shape parameter. It can be seen
that the well-known MQ function ðr2ðx,xjÞþC2

Þ
1=2
Þ is an argument

of this new RBF. The approximation solution is expressed by
linear combination of the new RBF (7),

uNðxÞ ¼
XN

j ¼ 1

ajjðx,xjÞ, ð8Þ

where aj is the unknown coefficient to be determined. In our
computations, the collocation points to enforce the governing
equation or the boundary conditions are identical to the RBF
origins. We use fxjg

NI

1 , fxjg
NI þND

NI þ1 and fxjg
N
NI þNDþ1 to denote the

collocation points in O, on G1 and on G2, respectively. Hence, the
following linear algebraic equations on aj’s are resulted:

XN

j ¼ 1

ajðr
2jðxi,xjÞþk2jðxi,xjÞÞ ¼ f ðxiÞ, i¼ 1,2, . . . ,NI , ð9Þ

XN

j ¼ 1

ajjðxi,xjÞ ¼ gðxiÞ, i¼NIþ1, . . . ,NIþND, ð10Þ

XN

j ¼ 1

aj

@jðxi,xjÞ

@n
¼ hðxiÞ, i¼NIþNDþ1, . . . ,N, ð11Þ

which can be written in the following matrix form:

½Aij�½aj� ¼ ½bi�: ð12Þ

The coefficients matrix ½Aij� is often ill-conditioned for both
direct and inverse problems. With an ill-conditioned matrix, the
predictions would be unstable especially when the input data
contains noise [37]. In this context, regularization methods have
been used to remedy the instability and accuracy loss in the
solution of ill-conditioned matrix [37,40,41]. In this paper, we
shall employ the DSVD under parameter choice of GCV which is
introduced in the following section.

3. Regularization method and regularization parameter

Before presenting the regularization method and regulariza-
tion parameter, we introduce the singular value decomposition
(SVD) of the coefficient matrix in (12),

A¼WSVT , ð13Þ

where W ¼ ½w1,w2, . . . ,wN�ARN�N , WT W ¼ IN and V ¼ ½v1,v2, . . . ,
vN �ARN�N , VT V ¼ IN and IN denotes the N-th order identity matrix.
The singular values of A are the diagonal entries of S¼ diagðs1,s2,
. . . ,sNÞ which has non-negative diagonal elements appearing in
non-increasing order such that

s1Zs2Z � � �ZsN Z0: ð14Þ

The column vectors wi and vi are, respectively, left- and right-
singular vectors for the corresponding singular values. Using the
SVD, it is easy to get the solution to (12)

a¼
XN

i ¼ 1

wT
i bvi

si
: ð15Þ

Remark: The conventional L2 condition number of A is defined as
CondðAÞ ¼ s1=sN , in which s1 and sN are the largest and smallest
singular values of A.

3.1. Regularization method

The Damped Singular Value Decomposition (DSVD) is based on
the SVD and the Tikhonov regularization (TR) technique [37]. The
idea of TR is to define the regularized solution to (12) by the
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