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a b s t r a c t

This paper develops the Somigliana type boundary integral equations for fracture of anisotropic

thermoelastic solids using the Stroh formalism and the theory of analytic functions. In the absence of

body forces and internal heat sources, obtained integral equations contain only curvilinear integrals

over the solid’s boundary and crack faces. Thus, the volume integration is eliminated and also there is

no need to evaluate integrals over the contours in the mapped temperature domain as it was done

before. In addition to finite solids, the case of an infinite anisotropic medium with a remote thermal

load is also studied. The dual boundary element method for fracture of anisotropic thermoelastic solids

is developed based on the obtained boundary integral equations. Presented numerical examples show

the validity and efficiency of the obtained equations in the analysis of both finite and infinite solids

with cracks.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Modern composite materials are widely used in the engineering
design due to their useful properties, which allow reduction of
weight, yet keeping the strength and rigidity of the product. Compo-
site materials are, in general, anisotropic, which leads to the devel-
opment of analytical and numerical approaches for the analysis of
strength and fracture of anisotropic structural elements, including the
study of stress intensity factors at crack tips. Among the numerical
approaches, the boundary element method (BEM) is notable for high
accuracy and performance due to its semi-analytical nature and the
use of only boundary mesh. Sollero and Aliabadi [1], Pan and Amadei
[2] and Pan [3] have successfully applied the BEM to the analysis of
anisotropic solids with cracks under the mechanical load.

Nevertheless, when the thermal effects are considered, the extra
volume integral terms arise in the integral equations, which negate
the advantages of the BEM. For the case of isotropic solids, volume
integrals can be transformed to the boundary ones. Prasad et al. [4],
Mukherjee et al. [5], Koshelev and Ghassemi [6] utilized this
transformation approach in the BEM for studying of cracked
isotropic thermoelastic solids. However, in the case of anisotropic
solids the transformation of the volume integral to the boundary
one is a complicated problem. Tokovyy and Ma [7] obtained the
Volterra integral equations of thermoelasticity for the orthotropic
plane, half-plane and a strip. For a solid of an arbitrary shape, several
methods have been used. Deb and Banerjee [8] and Deb et al. [9]

developed the particular integral approach, which involves sub-
dividing of the domain occupied by a solid and carrying out multiple
regression analyses to approximate the temperature field in each of
the sub-domains as simple polynomials. Shiah and Tan [10] and
Shiah et al. [11] proposed the algorithm of exact volume-to-surface
integral transformation. Shiah and Tan [12] successfully applied this
approach to the analysis of cracked thermoelastic anisotropic solids.
However, some of the boundary integrals are evaluated in the
mapped temperature domain, which complicates the BEM algo-
rithm. Qin et al. [13–16] obtained the BEM for anisotropic pyro-
electric solids with thermally insulated cracks, holes and inclusions
minimizing the related potential energy and using Green’s function
method. However, the latter approach does not consider cracks with
temperature boundary conditions set on them.

This paper derives the boundary integral equations for plane
problems of thermoelasticity of anisotropic solids of arbitrary
shape using the theory of analytic functions [17,18]. This
approach has been utilized to obtain the boundary integral
equations for anisotropic [19] and piezoelectric [20] solids. Using
the obtained new identities of the extended Stroh formalism, this
paper develops the Somigliana type integral equations for the 2D
anisotropic thermoelasticity.

2. Governing equations and the extended Stroh formalism

Consider a steady state (or quasi-stationary) thermal and
mechanical fields acting in a solid placed in a fixed rectangular
coordinate system Ox1x2x3. The balance of a heat flux and a
static equilibrium of the solid are governed by the following
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equations [21, 22]:

hi,i ¼ 0, sij,j ¼ 0, ð1Þ

where hi is a heat flux; sij is a stress tensor. According to [21, 22], the
constitutive relations of the linear heat conduction (Fourier’s law)
and thermoelasticity (generalized Hook’s law) of anisotropic solids
are as follows:

hi ¼�kijy,j, sij ¼ Cijkmekm�bijy: ð2Þ

Here eij¼(ui,jþuj,i)/2 is a strain tensor; ui is a displacement vector;
y is a temperature change with respect to the reference tempera-
ture; Cijkm are elastic moduli; kij are heat conduction coefficients;
bij¼Cijkmakm are thermal moduli; aij are thermal expansion
coefficients. Tensors Cijkm, kij, bij and aij are assumed to be
symmetric. Here and further, the Einstein summation convention
is used. The comma at subscript denotes the differentiation with
the respect to the coordinate indexed after the comma, i.e.
ui,j�@ui/@xj.

Consider a cylindrical solid, in which temperature and dis-
placement fields do not change in the Ox3 direction, i.e. y,3�0,
ui,3�0 (plane strain conditions). In this case, one can study only
the 2D fields acting at the arbitrary cross-section of the solid
normal to the Ox3 axis.

For the plane problem, Eqs. (1) and (2) for heat conduction are
reduced to a homogeneous second-order differential equation

kijy,ij ¼ 0, ð3Þ

which solution can be expressed as [21]

y¼ 2Re g0ðztÞ
� �

, zt ¼ x1þptx2: ð4Þ

Here g(zt) is an analytic function of a complex variable zt; the
prime ðdÞ0 denotes differentiation with respect to the argument; pt

is a complex constant with positive imaginary part, which is a
root of the characteristic equation

k22p2
t þ2k12ptþk11 ¼ 0: ð5Þ

According to Eq. (2), the components hi of the heat flux vector are
equal to the partial derivatives of the heat flux function W [13, 21]

h1 ¼�W,2, h2 ¼ W,1, W¼ 2kt Im g0ðztÞ
� �

, kt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11k22�k12

2
q

:

ð6Þ

The heat flux function W is a scalar function, which equals in
magnitude to the heat energy conducted through some arc
(actually, a cylindrical surface of a unit width normal to the
Ox1x2 plane). This can be easily verified by evaluation of the heat
energy conducted through an arc ss0Z s

s0

hini ds¼

Z s

s0

ðh1 dx2�h2 dx1Þ ¼

Z s

s0

ð�W,2 dx2�W,1 dx1Þ ¼ �WðsÞþWðs0Þ:

ð7Þ

Eq. (7) shows that the heat flux function is defined to within a
constant.

Eqs. (1) and (2) for thermoelastic equilibrium are reduced to the
non-homogeneous second-order differential equations [21, 23]

Cijkmuk,jm�bijy,j ¼ 0, ð8Þ

which homogeneous part is as follows:

Cijkmuk,jm ¼ 0: ð9Þ

According to Refs. [21, 23], the general solution of the homo-
geneous equation (9) is sought in the class of analytic functions
F(x1þpx2) as

uk ¼ akFðx1þpx2Þ: ð10Þ

Substituting Eq. (10) into Eq. (9) one can obtain the equation for
determination of unknown constants ak and p:

Cijkmðdj1þpdj2Þðdm1þpdm2Þak ¼ 0 ði,k¼ 1,::,3Þ, ð11Þ

where dij is a Kronecker delta. In matrix notation, Eq. (11) can be
written as

½QþpðRþRT
Þþp2T�a¼ 0: ð12Þ

Here the components of 3�3 matrices Q, R and T are defined as
Qik¼Ci1k1, Tik¼Ci2k2, Rik¼Ci1k2¼Ck2i1. Matrices Q and T are sym-
metric due to the symmetry of elastic moduli Cijkm.

Eq. (12) is reduced [23] to the eigenvalue problem for the
elasticity matrix N

N¼
N1 N2

N3 NT
1

" #
, Nn¼ pn, NTg¼ pg, ð13Þ

where N1¼�T�1RT; N2¼T�1; N3¼RT�1RT
�Q; n¼[a,b]T is a

right eigenvector and g¼[b,a]T is a left eigenvector of the
elasticity matrix N; superscript ‘‘T’’ denotes matrix transpose.
Vectors na and gb obtained for the eigenvalues pa and pb are
normalized as follows:

nT
agb ¼ dab: ð14Þ

Eigenvalues pa (and corresponding vectors aa) cannot be real [23],
therefore, the problem (13) produces six complex eigenvalues pa
and paþ3 ¼ pa (a¼1,..,3). Corresponding eigenvectors na ¼ naþ3

are also complex conjugate. Thus, the general solution of Eq. (9) is
obtained by superposing six solutions of the form (10) associated
with six eigenvalues pa.

The particular solution of the non-homogeneous equation (8)
is written as [21, 23]

ui ¼ cigðztÞ: ð15Þ

Substituting Eq. (15) into Eq. (8) one can obtain the following
matrix equation for determination of the vector c:

½QþptðRþRT
ÞþptT�c¼ b1þptb2, ð16Þ

where b1¼[bi1] and b2¼[bi2].
Since the displacement is a real function, the general solution

of Eq. (8) can be written as a real (or imaginary) part of the sum of
homogeneous solutions (10) associated with complex eigenvalues
pa and paþ3 ¼ pa (a¼1,..,3), and a particular solution (15) [21, 23]

u¼ 2Re AfðznÞþcgðztÞ
� �

, ð17Þ

where A�[Aia]¼[aa]; aa is an eigenvector of Eq. (12) that
corresponds to the eigenvalue pa (a¼1,2,3); f(zn)¼[F1(z1),F2(z2),
F3(z3)]T; za¼x1þpax2.

After differentiation of Eq. (17), using constitutive relations
(2) one can obtain stresses at the arbitrary point through Eqs. [21, 23]

si1 ¼�ji,2, si2 ¼ji,1 ði¼ 1,::,3Þ: ð18Þ

Here

u¼ 2Re Bf znð Þþdg ztð Þ
� �

ð19Þ

is a stress function. The matrix B�[Bia]¼[ba] and a vector d are
defined as follows [21, 23]:

ba ¼ ðR
T
þpaTÞaa ¼�ðQþpaRÞ

aa
pa

, ð20Þ

d¼ ðRT
þptTÞc�b2 ¼�

1

pt

ðQþptRÞcþ
1

pt

b1: ð21Þ

The Stroh orthogonality relations (14) can be written through
the matrices A and B in the following form [23]:

BT AT

B
T

A
T

" #
A A

B B

" #
¼

I 0

0 I

� �
: ð22Þ
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