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a b s t r a c t

The purpose of the current study is to empower the MLPG primitive variable-based method using the
characteristic-based split (CBS) scheme to solve the laminar fluid flow and natural, forced, and mixed
convection heat transfer at, respectively, higher Rayleigh, Reynolds and Peclet, and Reynolds and Grashof
numbers than those that the MLPG approach has ever solved. In this work, the CBS scheme with unity
test function is employed for discretization and the moving least square (MLS) method is used for
interpolation. As some test cases, natural convection within a square cavity, forced convection by fluid
flow over a bundle of tubes, and mixed convection within a lid-driven square cavity are solved by the
proposed method. For verifications, the obtained results are compared with those of the conventional
numerical methods in the literature. Being entirely meshless, strong in nature, and able to give accurate
and stable results for the broadest range of laminar fluid flow involving any of the three modes of
convection heat transfer, the proposed method shows to be a flexible and reliable technique which can
replace many available meshfree methods in the literature.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

During the past decade, a number of meshless, also called,
meshfree techniques have been developed by researchers to
alleviate the mesh generation hardships, high computational costs,
and remeshing procedures especially in three-dimensional pro-
blems. Among the available meshfree techniques are smooth
particle hydrodynamics (SPH) method [1], diffuse element method
(DEM) [2], partition of unity method (PUM) [3], meshless local
Petrov–Galerkin (MLPG) method [4], local boundary integral
equation (LBIE) method [5], and others. Most meshless methods
concentrate on solid mechanics [6–8], heat conduction [9–15],
p-Laplace equation [16], sine-Gordon equation [17], Eikonal equa-
tion [18], and magnetohydrodynamic (MHD) flow [19] areas.
However, there are a few implementations of these meshfree
techniques in the fluid flow and convection heat transfer arenas.

Sadat and Couturier [20] used the diffuse approximation
method (DAM) for solving two-dimensional incompressible lami-
nar thermal fluid flows. The projection algorithm was used to
treat the velocity–pressure coupling. Their work considered the
natural convection heat transfer in a square cavity for up to

Ra¼ 108 and in an eccentric circular annulus for up to Ra¼ 107.
In another work, Sophy et al. [21] used the same approach to solve
the three-dimensional differentially heated cubic cavity for up to
Ra¼ 106.

Kosec and Šarler [22] applied the meshfree local radial basis
function collocation method (RBFCM) to solve the natural convec-
tion heat transfer in a square cavity for up to Ra¼ 108 using the
primitive variable formulation. However, in their study they
reported that, the pressure correction calculation method
may not be efficient enough when working with finer grids
(200� 200 or finer) and for higher Rayleigh numbers (higher than
5� 107), hence, they recommended further investigations on
those topics. Szewc et al. [23] introduced a new variant for the
smoothed particle hydrodynamic (SPH) simulations for two nat-
ural convection heat transfer problems. They solved a Rayleigh–
Taylor instability problem and a natural convection in a square
cavity problem for up to Ra¼ 105. Wu and Liu [24] adopted
the local radial point interpolation method (LRPIM) to simulate
the two-dimensional natural convection cases. They used the
vorticity-stream function form of the Navier–Stokes equations
and solved the natural convection in a square cavity for up to
Ra¼ 105 and in a concentric circular annulus for up to Ra¼ 104.

Liu et al. [25] used the meshfree weak-strong (MWS) form
method for solving the Navier–Stokes equations in the form of
stream function–vorticity formulation. The heat transfer test case
in this study was the natural convection in a square cavity for up to
Ra¼ 105.
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In recent years, the MLPG method [4,26], known as a, truly
totally meshless technique, has considered a few fluid flow and
heat convection problems. Wu et al. [27] applied the MLPG
method to simulate the incompressible fluid flow in terms of the
stream function–vorticity formulation within an irregular domain
with scattered nodal distribution. They solved the natural convec-
tion heat transfer in the annulus of two concentric circular
cylinders for Rayleigh numbers of up to 104 and also the natural
convection in the annulus of a concentric circular inner and square
outer cylinder for Rayleigh numbers of up to 106.

Arefmanesh et al. [28] employed the MLPG method to solve the
Navier–Stokes equations in terms of the stream function–vorticity
formulation. The heat transfer test cases in this study were a non-
isothermal
lid-driven cavity fluid flow for Re¼ 100 and Pe¼ 50 and a non-
isothermal fluid flow over an obstacle for Re¼ 30 and Pe¼ 3. In an
another study, Arefmanesh et al. [29] employed the MLPG method for
solving the natural convection heat transfer in terms of the stream
function–vorticity formulation in a cavity with wavy side walls for up
to Ra¼ 106. Through another study, Arefmanesh et al. [30] employed
the MLPG stream function–vorticity based method in simulating
nanofluid flow mixed convection heat transfer in a wavy wall cavity
for different Richardson numbers and nanoparticles volume fractions.
The maximum Reynolds and Grashof numbers that they used in their
work were 1000 and 104, respectively. Nikfar and Mahmoodi [31]

applied the MLPG method using the stream function–vorticity for-
mulation to analyze the natural convection of nonofluids in a cavity
with wavy side walls for different Rayleigh numbers of up to 106.

As the above mentioned studies show, the MLPG vorticity
function-based method was utilized for just a few fluid flow and
heat convection problems. However, the stream function–vorticity
method, as it is known, is not considered as a flexible and strong
method and is looked upon as a complicated method for imple-
mentation in three-dimensional problems and in most of two-
dimensional complex geometries.

Wu et al. [32] extended the MLPG method to solve incompres-
sible fluid flow problems based on the primitive variable formu-
lation. In their study, the streamline upwind Petrov–Galerkin
(SUPG) method was applied to overcome the oscillations in their
convection-dominated problems. The heat transfer test case in
their study was natural convection in a square cavity for Rayleigh
numbers of up to 104. They concluded that, their method for
low Reynolds and Rayleigh numbers was good, but stated that,
further investigations were needed to improve the precision of
convection-dominated problems at high Reynolds numbers.

Based on a thorough literature search conducted, there is quite a
dearth of meshfree numerical work in convection heat transfer arena.
In fact, the very little available meshless works performed are limited
to a very few particular cases or a few low Rayleigh, Reynolds, Grashof,
and Peclet numbers convection heat transfer problems. In this present

Nomenclature

cp specific heat
D diameter
F body force
g gravitational acceleration
h minimum distance between the discretized point

to the boundary of the quadrature domain
Gr Grashof number
k thermal conductivity
L characteristic length scale, length
ni; nk components of outward normal vector
Nu Nusselt number
P pressure
Pe Peclet number
Pr Prandtl number
Ra Rayleigh number
Re Reynolds number
Ri Richardson number (Ri¼Gr=Re2)
SL longitudinal pitch
ST transverse pitch
T temperature
t time
u velocity in x direction
ua characteristic velocity, velocity
ui velocity components
v velocity in y direction
W weighting function
xi coordinate components
x; y Cartesian coordinates

Greek symbols

α thermal diffusivity
β thermal expansion coefficient

Γ global boundary (Γu∪Γt)
Γs boundary of Ωs

Γt natural boundary
Γu essential boundary
Γsi internal boundary of Ωs

Γst intersection of Γs and Γt

Γsu intersection of Γs and Γu

θ1; θ2 constant parameters
ν kinematic viscosity
ρ density
ψ stream function
Ωs local sub-domain

superscripts

− with dimension
� intermediate
n time level

subscripts

c cold, convection velocity
du velocity diffusion
dT temperature diffusion
h hot
i; j; k notation tensor (1;2)
max maximum
mid value at the midpoint of the cavity

M. Najafi et al. / Engineering Analysis with Boundary Elements 37 (2013) 1285–12991286



Download English Version:

https://daneshyari.com/en/article/512648

Download Persian Version:

https://daneshyari.com/article/512648

Daneshyari.com

https://daneshyari.com/en/article/512648
https://daneshyari.com/article/512648
https://daneshyari.com

