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a b s t r a c t

In this work, the modal and harmonic analysis of orthotropic shear deformable cracked plates using a

direct time-domain Boundary Element Method formulation based on the elastostatic fundamental

solution of the problem is presented. The Radial Integration Method was used for the treatment of

domain integrals involving distributed domain applied loads and those related with inertial mass

forces. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed

formulation.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The Boundary Element Method (BEM) is an attractive numer-
ical alternative to treat fracture problems in shear deformable
isotropic plates, mainly due to its ability to model continuously
high stress gradients (like those found near to the crack tip)
without the need of domain discretization. Successful formula-
tions based on the Dual Boundary Element Method were devel-
oped for the analysis of cracked shear deformable plates and
shells under static loads [1].

For plate bending dynamic analysis, BEM has emerged as an
accurate and efficient numerical method [2]. Boundary element
solutions for dynamic plate problems are usually obtained by
using three basic approaches: formulations based on elastody-
namic fundamental solutions, formulations based on Laplace or
Fourier transformations of the elastodynamic fundamental solu-
tions [11–13] and direct formulations based on elastostatic
fundamental solutions [18]. The simplicity of the real valuated
static fundamental solution is an advantage if compared to the
complicated complex valuated elastodynamic fundamental solu-
tion. In this approach, boundary element formulations create
domain integrals due to the presence of inertial terms. In order
to treat these domain integrals the Dual Reciprocity Method

(DRM) [16] and the Radial Integration Method (RIM) [14,15] have
been used.

In the last decade, few works have been reported in the
literature related to static and dynamic analysis of cracked ortho-
tropic plates. To the author’s knowledge, none of them applied to
the dynamic analysis of crack problems in shear deformable
orthotropic plates. In [20], a displacement discontinuity formula-
tion for the BEM analysis of crack orthotropic shear deformable
plates under static loads is presented. In [3,4] the dual boundary
element method is applied to the analysis of anisotropic cracked
plates under static in-plane loads. The dynamic analysis of cracked
anisotropic plates using a direct time-domain formulation and
formulations based on the Laplace transformation is presented
in [5–7] where the Dual Boundary Element Method and the Multi-
Domain Method were used to fracture modeling. In [8] the Radial
Integration Method was applied for the analysis of symmetric
laminated thin plates considering transverse static distributed
loads. This work was extended to the analysis of laminated thin
plates under dynamic loads as reported in [9]. In [10] this
formulation was applied to the modal analysis of thin symmetrical
laminated plates.

In this paper, the time-domain boundary element method
formulation presented in [18] is applied to modal and harmonic
analysis of cracked orthotropic shear deformable plates. The
fundamental solutions for elastostatics developed by Wang [19]
are used and the inertia terms are treated as body forces. The RIM
is used to transform the domain integrals into boundary integrals.
Cracked plates were modeled using the multi-domain technique.
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Numerical results show a good agreement when compared with
those obtained using the Finite Element Method.

2. Plate bending equations

Consider an elastic orthotropic plate of uniform thickness h,
mass density r, occupying an area O in the x1x2 plane, bounded
by the contour G¼Gw

S
Gp with G¼Gw

T
Gp � 0. The bending

response for the plate was modelled using the First Order Shear
Deformation Theory. The relations between the generalized dis-
placements and strains are [1]:

2wab ¼wa,bþwb,a

ca ¼waþw3,a ð1Þ

where wab is the curvature tensor and ca are the transversal shear
strains. Indicial notation is used throughout this work. Greek
indices vary from 1 to 2 and Latin indices take values from 1 to 3.
Einstein’s summation convention is used unless otherwise indi-
cated. In these equations, wa represents rotations with respect to
x1 and x2 axes and w3 represents transversal deflection.

The equilibrium equations for an infinitesimal shear deform-
able plate under dynamical distributed loading qi are given by
[18]

Mab,b�Qaþqa ¼Labwb,tt ð2Þ

Qa,aþq3 ¼L33w3,tt ð3Þ

where Mab and Qa are the resultant tensor moment and the
normal shear vector, respectively. wa,tt denotes angular accelera-
tions with respect to x1 and x2 axes, respectively, w3,tt represents
the transverse acceleration. qa are distributed moments and
q3 ¼ p represents distributed pressure. Lik is a tensor defined as:
Lab ¼ 1=12rh3dab, L33 ¼ rh and La3 ¼L3a ¼ 0.

For an orthotropic plate, the resultant tensor moment Mab and
the normal shear vector Qa are [19]:

Mab ¼Dabðwa,bþwb,aÞþCabwg,g ð4Þ

Qa ¼ Caca ð5Þ

where elastic constants Dab, Cab and Ca are given by

C12 ¼ C21 ¼ 0, C11 ¼D1n21, C22 ¼D2n12

D1 ¼
E1h3

12ð1�m12m21Þ
, D2 ¼

E2h3

12ð1�m12m21Þ
, Dk ¼

G12h3

12

D1n21 ¼D2n12, C1 ¼ G31kh, C2 ¼ G32Kh ð6Þ

In these expressions, Ea represents elastic modulus, Gib are shear
modulus, nab and K¼5/6 is the shear correction factor.

Substituting Eqs. (1) and (5) into equilibrium Eqs. (3), we obtain
the following differential equations using generalized displace-
ments as basic unknowns:

Likwkþqi ¼Likwk,tt ð7Þ

Differential operator Lik is defined as:

L11 ¼D1
@2

@x2
1

þDk
@2

@x2
2

�C1, L22 ¼Dk
@2

@x2
1

þD2
@2

@x2
2

�C2,

L12 ¼ L21 ¼ ðD1m21þDkÞ
@2

@x1@x2
, L13 ¼�L31 ¼�C1

@

@x1
,

L23 ¼�L32 ¼�C2
@

@x2
, L33 ¼ C1

@2

@x2
1

þC2
@2

@x2
2

ð8Þ

The generalised boundary conditions for these equations are
given by:

wkðx,tÞ ¼wk 8 xAGw

paðx,tÞ ¼Mabnb ¼ pa 8 xAGp

p3ðx,tÞ ¼ Qana ¼ p3 8 xAGp ð9Þ

where pa represents in-plane moments and p3 is the shear force.
wk and pk are generalised displacement and tractions imposed at
Gw and Gp, respectively. In a similar way, initial conditions are
given by:

wkðx,0Þ ¼w0
k 8 xAO, tA ½0,tmax�

_wk ðx,0Þ ¼ _w
0

k 8 xAO, tA ½0,tmax� ð10Þ

3. Boundary integral formulation

The derivation of the integral formulation for Eqs. (7) is based
on the application of the BEM to the shear deformable plate
theory as presented in [1], where integral representations related
to the governing equations for bending and transverse shear
stress resultants are derived by using the weighted residual
method, and making use of Green’s identity. Thus, the integral
formulation for these equations (considering qa ¼ 0 and q3 ¼ p) is
given by

cikwkðx
0,tÞþ

Z
G

Pn

ikðx
0,xÞwkðx,tÞ dG¼

Z
G

Wn

ikðx
0,xÞpkðx,tÞ dG

þ

Z
O

Wn

i3ðx
0,xÞpðx,tÞ dO�

Z
O

Wn

ikðx
0,xÞLikwk,ttðx,tÞ dO ð11Þ

where Wn

ik and Pn

ik are fundamental solutions of the orthotropic
shear deformable plates as presented in [19]; cijðx

0Þ are the jump
terms arising from the terms of Oð1=rÞ in the kernel Pn

ij. Eq. (11)
represents three integral equations, two (i¼1,2) for rotations and
one for deflection.

4. Transformation of domain integrals

In order to transform domain integrals related with distributed
pressure and inertial terms into boundary integrals, the Radial
Integration Method—RIM—was used as presented in [10] where
body forces are approximated with the use of radial basis
functions.

Consider the domain term p(t) in Eq. (11) approximated over
the domain as a sum of the M products between radial basis func-
tions fm and unknown coefficients gmðtÞ, that is:

pðtÞ �
XM

m ¼ 1

f mgmðtÞ ð12Þ

The second domain integral of Eq. (11) in the right-hand side can
be written asZ
O

Wn

i3pðtÞ dO¼
XM

m ¼ 1

gmðtÞ

Z
O

Wn

i3ðx
0,xÞf m dO

¼
XM

m ¼ 1

gmðtÞ

Z
y

Z r

0
Wn

i3ðx
0,xÞf mr dr dy ð13Þ

where r is the value of r in a point of the boundary G as shown in
Fig. 1. Defining Em

i3 as the following integral:

Em
i3ðx

0Þ ¼

Z r

0
Wn

i3ðx
0,xÞf mr dr ð14Þ
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