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a b s t r a c t

The element free Galerkin (EFG) method is a promising method for solving flow problems, but it meets

the difficulty of volumetric locking for solving the incompressible flow problems. In this paper, a mixed

EFG method is proposed for solving the steady incompressible flow problems, which avoids the

volumetric locking and inherits the meshfree properties. The method employs two sets of nodes, one

for the velocity approximation and the other for the pressure approximation. Specially, the ratio

between the velocity node number and the pressure node number is taken as the only indicator for the

locking behavior of the mixed EFG method. And inf–sup tests are carried out to investigate the

relationship between the ratio and locking behavior. By two numerical examples, the accuracy, rate of

convergence and efficiency of the mixed EFG method are also carefully studied. The results show that

the accuracy, convergence and efficiency of the mixed EFG method are superior to that of the time-

related fractional step methods.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, a large variety of meshfree methods [1–7] have been
proposed for flow problems. Element free Galerkin (EFG) method [8],
which uses the moving least squares (MLS) approximation to con-
struct shape functions and Galerkin weak-form to formulate partial
differential equations, is one of the most famous meshfree methods.

For the unsteady flow problems, several algorithms based on
the EFG method have been successfully developed. Qiu et al. [9]
combined the EFG method with a fractional step method [10,11]
to simulate flow around a cylinder. Li and Duan [12] and Zhang
et al. [13] introduced the Characteristic-Based Split (CBS) scheme
to the EFG method for incompressible Navier–Stokes equations.
Xiong and Wang [14] combined the EFG method with the
SIMPLER algorithm [15] to solve incompressible viscous flow
problems. When it is to the steady flow problems, these methods
are often used by means of relating the problems with time and
getting approximate solutions through time-marching. However,
the efficiency of these methods for steady flow problems is very
low because too many iteration steps are needed. Furthermore,
their accuracy is reduced by operator splitting.

An alternate way for solving the steady flow problems uses the
EFG method in the mixed form [16,17]. However, this way often
encounters the problem of volumetric locking [18,19] in the case
of incompressible or nearly incompressible [20,21]. In Refs. [8,22],

it was claimed that the EFG method does not exhibit volumetric
locking when the shape functions were constructed with large
domains of influence. However, large domains of influence not
only increase the computation cost but also decrease the
accuracy.

In this study, a mixed EFG method is proposed for solving
the steady incompressible flow problems to avoid volumetric
locking by means of using different approximations for the
velocity and the pressure. The method uses two sets of nodes,
one for the velocity and the other for the pressure. The two sets of
nodes can be generated independently. The velocity and the
pressure are approximated by the MLS method based on their
own set of nodes, and the approximation orders may be different.
The interpolations of the solution values from one set of nodes to
the other are performed by the MLS approximations. Volumetric
locking can be avoided using this mixed EFG method only if the
numbers of velocity nodes are more than that of pressure nodes.
Compared with the time-related methods, the mixed EFG method
solves the flow variables without relating the steady Navier–
Stokes equations with time and decoupling them, so that huge
computational cost caused by time-marching and errors caused
by splitting algorithms can be removed.

The outline of this paper is as follows: Section 2 is the basic
formula of the mixed EFG method for steady flow problems,
including shape function construction, mixed variational formu-
lation, inf–sup condition and mixed modes. In Section 3, the
locking-free behavior of the mixed EFG method is tested and
verified. Then, the accuracy and efficiency of the mixed EFG method
are carefully studied in Sections 4 and 5, respectively. Section 6
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investigates the performance of the mixed EFG method on the
numerical example of lid-driven cavity flow. Finally, some brief
conclusions are drawn in Section 7.

2. Basic formulas

2.1. Steady Navier–Stokes equations

Steady flows of viscous incompressible fluids are governed
by the steady Navier–Stokes equations. The strong form of the
boundary value problem is stated as follows: given the body force
b in domain O, velocities u on boundary portion GD and tractions
t on the remaining portion GN, determine the velocity field u and
the pressure field p, such that

rUu¼ 0 in O, ð1Þ

�
1

Re
r

2uþðuUrÞuþrp¼ b in O, ð2Þ

along with the boundary conditions

u¼ u on GD ð3Þ

�pnþ
1

Re
ðnUrÞu¼ t on GN , ð4Þ

where Re is the Reynolds number defined as Re¼VL/n. V, L and n
represent the characteristic velocity, characteristic length and
kinematic viscosity, respectively.

2.2. MLS approximation

Consider an unknown scalar function u(x) in the domain O.
The MLS approximation of u(x) at x is defined as

uhðxÞ ¼
Xm

j ¼ 1

pjðxÞajðxÞ ¼ pT ðxÞaðxÞ, ð5Þ

where pT(x) is the basis vector of the spatial coordinates, x¼
(x1,x2)T for two dimensional problem, and m is the number of the
basis functions. In two dimensional cases, the basis function pT(x)
is often given by

Constant basis pT
¼(1),

Linear basis pT
¼(1,x1,x2),

Quadratic basis pT ¼ ð1,x1,x2,x2
1,x1x2,x2

2Þ.

In Eq. (5), a(x) is the vector of coefficients given by

aðxÞ ¼ ða1ðxÞ,a2ðxÞ,. . .,amðxÞÞ
T

ð6Þ

To determine the coefficient vector a(x), we define a weighted
discrete L2 norm as follows:

RðxÞ ¼
Xn

i ¼ 1

wðx�xiÞ½p
T ðxiÞaðxÞ�ui�

2, ð7Þ

where n, w(x�xi), and ui¼u(xi) represent the node number in the
support domain of x, node weight functions and values of the
function at node xi, respectively. In this paper, we choose the
cubic spline as the weight functions, i.e.

wðx�xIÞ ¼wðrÞ ¼

2=3�4r2þ4r3 rr1=2

4=3�4rþ4r2�4r3=3 1=2orr1

0 r41

8><
>: ð8Þ

In order to guarantee uh(x) is the best approximation, we need
to minimize R(x), that is

@R

@a
¼ AðxÞaðxÞ�BðxÞU¼ 0 ð9Þ

where

AðxÞ ¼
Xn

i ¼ 1

wðx�xiÞpðxiÞp
T ðxiÞ, ð10Þ

BðxÞ ¼ ðwðx�x1Þpðx1Þ,wðx�x2Þpðx2Þ,. . .,wðx�xnÞpðxnÞÞ ð11Þ

and U is the vector that collects the values of field function for all
the nodes in the support domain.

U¼ ðu1,u2,. . .,unÞ
T

ð12Þ

Solve a(x) from (9) and insert it into (5), we get the approx-
imate function of u(x), so that

uhðxÞ ¼ pT ðxÞA�1
ðxÞBðxÞU¼UT

ðxÞU ð13Þ

where

UT
ðxÞ ¼ ðf1ðxÞ,f1ðxÞ,. . .,fnðxÞÞ

T
ð14Þ

Notice that the MLS shape functions given in (13) do not, in
general, satisfy the Kronecker delta condition. Special techniques,
such as the penalty method and Lagrange multiplier method [23],
should be used to impose the essential boundary conditions for the
EFG method. Because of its simplicity, the penalty method is used in
this paper.

2.3. Mixed variational formulation

The variational formulation of the steady Navier–Stokes equa-
tions requires local approximations for the velocity components
and pressure, as well as for their associated test functions. We
denote by Sh and Vh the finite dimensional spaces of trial
solutions and test functions with respect to the velocity, and Qh

the finite dimensional space with respect to the pressure. The
mixed variational formulation [24] for the steady Navier–Stokes
equations then may be stated as follows: for the given b, u and t,
find the velocity uhASh and the pressure phAQh for
allðwh,qhÞAVh �Qh, such that

aðwh,uhÞþcðuh;wh,uhÞþbðwh,phÞ ¼ ðwh,bh
Þþðwh,thÞGN

8whAVh

bðuh,qhÞ ¼ 0 8qhAQh

8<
:

ð15Þ

where

aðwh,uhÞ ¼
1

Re

Z
O
rwh : ruh dO, ð16Þ

cðuh;wh,uhÞ ¼

Z
O

wh
Uðuh

UrÞuh dO, ð17Þ

bðwh,phÞ ¼ �

Z
O

phrUwh dO, ð18Þ

bðuh,qhÞ ¼�

Z
O

qhrUuh dO, ð19Þ

ðwh,bh
Þ ¼

Z
O

whbh dO, ð20Þ

ðwh,thÞGN
¼

Z
GN

whth dG, ð21Þ

and

rUwh ¼ ð@wh
1=@x1,. . .,@wh

nsd
=@xnsd

Þ
T , ð22Þ

whbh
¼ ðwh

1bh
1,. . .,wh

nsd
bh

nsd
Þ
T , ð23Þ

with nsd¼2 for two dimensions and nsd¼3 for three dimensions.
Together with the penalty method for essential boundary condi-
tions, (15) becomes to
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