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a b s t r a c t

A comparison of the performance of the global and the local radial basis function collocation meshless

methods for three dimensional parabolic partial differential equations is performed in the present

paper. The methods are structured with multiquadrics radial basis functions. The time-stepping is

performed in a fully explicit, fully implicit and Crank–Nicolson ways. Uniform and non-uniform node

arrangements have been used. A three-dimensional diffusion–reaction equation is used for testing with

the Dirichlet and mixed Dirichlet–Neumann boundary conditions. The global methods result in

discretization matrices with the number of unknowns equal to the number of the nodes. The local

methods are in the present paper based on seven-noded influence domains, and reduce to discretiza-

tion matrices with seven unknowns for each node in case of the explicit methods or a sparse matrix

with the dimension of the number of the nodes and seven non-zero row entries in case of the implicit

method. The performance of the methods is assessed in terms of accuracy and efficiency. The outcome

of the comparison is as follows. The local methods show superior efficiency and accuracy, especially for

the problems with Dirichlet boundary conditions. Global methods are efficient and accurate only in

cases with small amount of nodes. For large amount of nodes, they become inefficient and run into

ill-conditioning problems. Local explicit method is very accurate, however, sensitive to the node

position distribution, and becomes sensitive to the shape parameter of the radial basis functions when

the mixed boundary conditions are used. Performance of the local implicit method is comparatively

better than the others when a larger number of nodes and mixed boundary conditions are used. The

paper represents an extension of our recently made similar study in two dimensions.

Published by Elsevier Ltd.

1. Introduction

In recent years radial basis functions (RBFs) have been exten-
sively used in different applications [2,3,5,17,32,36,37,39,43] and
emerged as a potential alternative in the field of numerical solution
of partial differential equations (PDEs). A detailed discussions
on meshless methods and their applications to many complex
PDEs, industrial and large-scale problems can also be found in
[8,11,12,22–24,40,42] and the references therein.

Different types of meshless methods, based on RBFs, have
gained popularity in the engineering and science community for a
number of reasons. The most attractive features of the meshless
methods are (i) they provide an alternative numerical tool, free
from extensive and costly mesh generation or manipulation related

problems; (ii) they are flexible in dealing with complex geometries,
and are easily extendible to multi-dimensional problems. Meshless
methods have been proved successful for solving PDEs on both
regular and irregular node arrangements. They use functional basis
which allows arbitrary placement of points. Traditional numerical
methods, such as the finite difference method (FDM), the finite
volume method (FVM), and the finite element method (FEM), are
based on the local mesh based interpolation to find the solution and
its derivatives. In contrary to these mesh-based methods, meshless
methods use a set of uniform or random points which are not
interconnected in the form of a classical mesh. Meshless methods
actually reduce to multivariate data fitting between the points and
related calculation of the derivatives and/or integrals. In the case of
meshless methods, interpolation can be accomplished both locally
and globally with high efficiency.

In 1971, Hardy introduced radial basis functions interpolation
[13] to approximate two-dimensional geographical surfaces based
on scattered data. Later on, meshless methods, based on
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Multiquadric (MQ) RBFs [15], were derived for numerical solutions
of different types of PDEs. The idea was extended by [10] after-
wards. The existence, uniqueness, and convergence of the RBFs
approximation was discussed in [9,26,28]. The importance of shape
parameter c in the MQ RBF was elaborated in [35]. Solvability of the
system of equations with respect to distinct interpolation points
was discussed in [28]. All of these methods can be called the global
radial basis function collocation method (GRBFCM). The most
recent applications of the GRBFCM can be found in [1,17,32–34].
The main disadvantage of the GRBFCM is that it involves full
matrices that result from the discretization of the PDEs. These
matrices are often ill-conditioned and extremely sensitive to the
choice of the shape parameters in RBFs.

To overcome the problems of ill-conditioning and shape
parameter sensitivity of the GRBFCM, the local radial basis
function collocation method (LRBFCM) was first introduced for
diffusion problems in [43] with improved results in terms of
accuracy and efficiency of the method. Subsequently, due to
handiness of this approach, the LRBFCM has been applied to more
complex problems such as convection–diffusion problems with
phase-change [37], continuous casting [40], solid–solid phase
transformations [22], heat transfer and fluid flow [41], Navier–
Stokes equations [7], Darcy flow [19], turbulent flow [39], etc.

The main idea of LRBFCM is the collocation on the overlapping
sub-domains of influence instead of the whole domain which
drastically reduces the size of the collocation matrix at the
expense of solving many small matrices. The size of each small
matrix is the same as the number of nodes included in the domain
of influence of each node.

The main disadvantage of the LRBFCM is that the method does
not work for elliptic problems in a straightforward way. Another
kind of RBF-based meshless methods use the integration of RBFs
instead of the differentiation of the RBFs. They are known as
indirect RBF collocation methods. This class includes indirect
RBFN method (IRBFN) [27], the method of approximate particular
solutions (MAPS) [6], the localized method of approximate parti-
cular solutions (LMAPS) [47], and others. The recent studies can
be found in [49]. The LMAPS works well for elliptic PDEs, and can
be extended to time-dependent problems as well [46]. This
approach yields sparse matrices instead of full matrices, which
makes the LMAPS suitable for solving large-scale problems.
However, in this paper, we will focus on the LRBFCM only.

PDEs govern physical problems like transport processes, includ-
ing heat transfer and fluid flows, wave propagation or interaction
between fluids and solids, and option pricing. Unlike lower-dimen-
sional problems, the numerical simulation of three-dimensional
problems [4,44,45] is much more computationally intensive in
terms of CPU time and huge memory requirements. Local meshless
methods are not that much prone to these problems since the
coefficient matrix is of the same size as the size of the local sub-
domain, which is usually relatively small. In the case of uniform
node arrangement, the small matrix needs to be inverted only once
outside the time-loop for time-dependent problems. This saves a
considerable amount of CPU time and consumes less memory as
well. The computational efficiency of the local meshless methods in
the case of two-dimensional problems and its usefulness in large-
scale simulations can be found in [19–21,25,38,39,48].

This paper is an extension of work in [48] to three-dimensional
problems. The main motivation for this work is that literature on
the numerical methods for three-dimensional problems is sparse
compared with lower-dimensional problems. This is particularly
true in the field of meshless methods. Some of the related work
can be found in Refs. [4,14,18,44,45]. We compare performances
of the following five meshless collocation methods: the global
implicit radial basis function collocation method (GI), the global
Crank–Nicolson radial basis function collocation method (GCN),

the global explicit radial basis function collocation method (GE),
the local explicit radial basis function collocation method (LE), and
the local implicit radial basis function collocation method (LI).

The structure of the rest of the paper is as follows. In Section 2,
we introduce the governing equations. In Section 3, we discuss
the time discretization technique from implicit and explicit points
of view. In Section 4, the numerical methods are introduced from
the local and global views. Section 5 is devoted to discussion
regarding the scaling technique of the shape parameter c of MQ
RBF and the numerical tests on benchmark problems. At the end,
conclusions are drawn.

2. Governing equations

Consider a dimensionless form of the three-dimensional
diffusion–reaction equation, defined on domain O with boundary G

@uðx,tÞ

@t
¼L½uðx,tÞ�þmuðx,tÞþgðx,tÞ, xAO, t4t0, ð1Þ

with the initial condition

uðx,t0Þ ¼ u0, xAO [ G, ð2Þ

and Dirichlet or Neumann boundary conditions

B½uðx,tÞ� ¼ f ðx,tÞ, tZt0, xAG, ð3Þ

where u,t,x¼ ½x,y,z�tr are the diffusion, time and space variables,
respectively, tr represents the matrix transpose, g and f are the
known functions of x and t, G¼GDþGN , where GN and GD are the
boundaries that satisfy Neumann and Dirichlet boundary conditions,
respectively. m is a real constant, L is a differential operator
consisting of first- or second-order derivatives of space variables
and B is a first-order differential operator with respect to space
variables in the case of the Neumann boundary conditions and is
identity operator in the case of the Dirichlet boundary conditions.

3. Time discretization

Let Dt be the time-step size, and t¼ t0þDt be the time
discretization, where t0 refers to the beginning time of every time
step, and t refers to the end of the time step. For a time period ½t0,t�,
the time derivative in Eq. (1) is approximated by Euler formula:

@uðx,tÞ

@t
�

uðx,tÞ�uðx,t0Þ

Dt
: ð4Þ

Let yAð0;1�. The parameter y is used in the time discretization of
Eq. (1) as

uðx,t0þyDtÞ � yuðx,tÞþð1�yÞuðx,t0Þ, ð5Þ

gðx,t0þyDtÞ � ygðx,tÞþð1�yÞgðx,t0Þ, ð6Þ

L½uðx,t0þyDtÞ� � yL½uðx,tÞ�þð1�yÞL½uðx,t0Þ�: ð7Þ

Then Eq. (1) can be discretized in time-space as

ð1�myDtÞuðx,tÞ�yDtL½uðx,tÞ��yDtgðx,tÞ

¼ ð1þmð1�yÞDtÞuðx,t0Þþð1�yÞDtL½uðx,t0Þ�

þð1�yÞDtgðx,t0Þ, ð8Þ

note that t¼ t0þDt. Similarly, for xAG, Eq. (3) can be discretized in
time-space as

yB½uðx,tÞ��yf ðx,tÞ ¼ �ð1�yÞB½uðx,t0Þ�þð1�yÞf ðx,t0Þ: ð9Þ

To represent the approximate solution of Eqs. (1)–(3) in a single
equation, at the interior and boundary points, we define the following
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