
The complex variable reproducing kernel particle method for
two-dimensional inverse heat conduction problems

Y.J. Weng a,b, Z. Zhang c, Y.M. Cheng a,n

a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering,
Shanghai University, Shanghai 200072, China
b Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
c School of Science, East China University of Science and Technology, Shanghai 200237, China

a r t i c l e i n f o

Article history:
Received 11 November 2013
Received in revised form
18 February 2014
Accepted 9 April 2014
Available online 8 May 2014

Keywords:
Meshless method
Reproducing kernel particle method
(RKPM)
Complex variable reproducing kernel
particle method (CVRKPM)
Inverse heat conduction problem

a b s t r a c t

The complex variable reproducing kernel particle method (CVRKPM) for two-dimensional inverse heat
conduction problems is presented in this paper. In the CVRKPM, the shape function of a two-dimensional
problem is formed with one-dimensional basis function, the Galerkin weak form is employed to obtain the
discretized system equation, and the penalty method is used to apply the essential boundary conditions,
then the corresponding formulae of the CVRKPM for two-dimensional inverse heat conduction problems
are obtained. Numerical examples are given to show that the method in this paper has higher compu-
tational accuracy and efficiency compared with the conventional element-free Galerkin (EFG) method and
the reproducing kernel particle method (RKPM).

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse problems are very important and difficult in
science and engineering. Over the last several decades, the inverse
heat conduction problems have gained great research interests
owing to the computational challenges and practical significance.
Different types of inverse heat conduction problems such as
boundary inverse heat conduction problems, retrospective inverse
heat conduction problems, coefficient inverse heat conduction
problems and geometric inverse heat conduction problems, etc.,
have been extensively studied.

In general, the inverse heat conduction problems are solved by
numerical methods [1–3], such as finite difference method [4],
fundamental solutionmethod [5], residual-minimization least squares
method [6], wavelet method [7], finite element method [8–10],
and boundary integral equation method [11–13]. These methods are
derived from local interpolation schemes and require meshes to
support the applications.

Meshless methods are approximate methods that are based on
nodes without initial mesh and re-meshing [14–16]. Then mesh-
less method can overcome the disadvantage that the conventional
numerical method depends on the mesh of the solution domain.

At present, element-free Galerkin (EFG) method [17,18], the
reproducing kernel particle method (RKPM) [19–21], element-
free kp-Ritz method [22–24] and the complex variable meshless
method [25–29] are the most important meshless methods.

The moving least-square (MLS) approximation is employed to
construct shape functions in the EFG method. The MLS approxima-
tion was developed from the conventional least-squares method,
and in practical numerical processes, it essentially involved the
application of the conventional method to every selected point. A
new method of obtaining the approximation function named the
improved MLS (IMLS) approximation has been developed by Cheng
et al. [30–32]. In the IMLS, the orthogonal function system with a
weight function is used as the basis function. Based on the IMLS
approximation and the boundary integral equation method, bound-
ary element-free method (BEFM) is presented for potential, elasti-
city, elastodynamics and fracture problems [33–37]. Based on the
IMLS approximation and the Galerkin weak form, an improved EFG
(IEFG) method is presented for potential, transient heat conduction,
wave, elasticity, elastodynamics and fracture problems [38–44].
Using the improved interpolating MLS method to obtain the shape
function, the interpolating element-free Galerkin (IEFG) method
and the interpolating boundary element-free method (IBEFM) are
presented for potential and elasticity problems [45–48].

The RKPM is developed on the basis of the smoothed particle
hydrodynamics (SPH) method. The RKPM is one of the most
important methods used to form approximation function in the
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meshless methods. The RKPM has many advantages, such as good
smoothness and high computational accuracy. Based on the RKPM
and Ritz method, Liew et al. presented the element-free kp-Ritz
method for laminated rotating annular plate, cylindrical panel and
wave Eqs. [22–24]. And Wang et al. presented Hermite reprodu-
cing kernel Galerkin meshfree method for free vibration, transient
analysis and buckling analysis of thin plates [49–51].

To improve the computational accuracy and efficiency of the EFG
method and the RKPM, the complex variable meshless methods
were presented based on the complex theory. Based on the complex
variable moving least-squares (CVMLS) approximation [52–55], the
complex variable element-free Galerkin (CVEFG) method was pre-
sented for potential, elasticity, fracture, elastodynamics, transient
heat conduction, advection-diffusion, viscoelasticity, elastoplasticity
and large deformation problems [25–29,56–61], the complex vari-
able boundary element-free method (CVBEFM) was presented for
elastodynamics [62], and the complex variable meshless manifold
method was presented for elasticity and fracture problems [63,64].
Ren et al. presented the complex variable interpolating moving least-
squares method [65]. Also, introducing the complex theory into the
RKPM, the complex variable reproducing kernel particle method
(CVRKPM) was presented to obtain the shape function and solving
transient heat conduction, elasticity, elastodynamics, elastoplasticity
and advection-diffusion problems [20,66–69]. And the coupling of
the CVRKPM and the finite element method was presented for
solving transient heat conduction problems [70]. The CVMLS approx-
imation and the CVRKPM are the approximations of vector functions,
and the shape functions of 2D problems are formed with 1D basis
function. Under the same node distribution, the meshless methods
based on the CVMLS approximation and the CVRKPM have higher
precision than the ones based on the MLS approximation and the
RKPM, respectively. And under the similar numerical precision, the
meshless methods based on the CVMLS approximation and the
CVRKPM have greater computational efficiency than the ones based
on the MLS approximation and the RKPM, respectively.

In this paper, the CVRKPM solving the 2D inverse heat conduc-
tion problems is proposed. For the 2D inverse heat conduction
problems, the shape function of the CVRKPM is constructed, and
the penalty method is employed to apply the essential boundary
conditions. The Galerkin weak form is employed to obtain the
discretized system equations. Then the final system equation of
the 2D inverse heat conduction problems using the CVRKPM is
obtained. Finite difference scheme for the time discretization of
parabolic equations is used to discretize the time and to obtain
the solutions of the final system equation. Some numerical
examples are presented, and the CVRKPM results are compared
with the ones of the RKPM and the EFG method. It is shown that
the numerical results of the CVRKPM are in excellent agreement
with the analytical solutions, and that the CVRKPM has higher
accuracy and computational efficiency than the RKPM and the EFG
method.

2. The shape function of the CVRKPM

In the CVRKPM, the approximate function uhðzÞ of a complex
function uðzÞ is [66,67]

uhðzÞ ¼ uh
1ðzÞþ iuh

2ðzÞ ¼
Z
Ω
uðz0ÞUwhðz�z0Þdz0; ðz¼ x1þ ix2AΩÞ; ð1Þ

where whðz�z0Þ is a corrected reproducing kernel function,

whðz�z0Þ ¼ Cðz; z�z0ÞUwhðz�z0Þ; ð2Þ

whðz�z0Þ is the kernel function which has a compact support
domain, and Cðz; z�z0Þ is the correction function,

Cðz; z�z0Þ ¼ ∑
m

i ¼ 0
piðz�z0ÞUbiðzÞ ¼ pT ðz�z0ÞbðzÞ ; ðzAΩÞ; ð3Þ

pT ðz�z0Þ ¼ ðp0ðz�z0Þ; p1ðz�z0Þ; p2ðz�z0Þ;…; pmðz�z0ÞÞ; ð4Þ

bTðzÞ ¼ ðb0ðzÞ; b1ðzÞ; b2ðzÞ;…; bmðzÞÞ; ð5Þ
where m is the highest order of polynomial basis functions,
piðz�z0Þ are the basis functions, and biðzÞ are the corresponding
coefficients.

Using the trapezoidal rule to Eq. (1), we can obtain the
discretized form of the complex variables reproducing kernel
approximation as

uhðzÞ ¼ CðzÞWðzÞV Uu; ð6Þ
where

u¼ ðuðz1Þ;uðz2Þ;…;uðznÞÞT ¼Qu; ð7Þ

uðzIÞ ¼ u1ðzIÞþ iu2ðzIÞ; ð8Þ
zI is the node in the support domain of z, n is the total number of
the nodes in the support domain of z,

u¼ ðu1ðz1Þ;u2ðz1Þ;u1ðz2Þ;u2ðz2Þ;…;u1ðznÞ;u2ðznÞÞT; ð9Þ

Q ¼

1 i 0 0 0 0 ⋯ 0 0
0 0 1 i 0 0 ⋯ 0 0
0 0 0 0 1 i ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 0 ⋯ 1 i

2
6666664

3
7777775
n�2n

; ð10Þ

WðzÞ ¼

wðz�z1Þ 0 ⋯ 0
0 wðz�z2Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ wðz�znÞ

2
66664

3
77775; ð11Þ

V ¼

ΔV1 0 ⋯ 0
0 ΔV2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ΔVn

2
66664

3
77775; ð12Þ

ΔVI is the volume of node zI and represents the integration
weight, i.e.

∑
nt

I ¼ 1
ΔVI ¼Ω; ð13Þ

and nt is the total number of nodes distributed in the solution
domain.

Let

CIðzÞ ¼ CIðz; z�zIÞ ¼ pTðz�zIÞbðzÞ; ð14Þ
then

CðzÞ ¼ ðC1ðzÞ;C2ðzÞ;…;CnðzÞÞ ¼ bTðzÞP; ð15Þ
where

P ¼

p0ðz�z1Þ p0ðz�z2Þ ⋯ p0ðz�znÞ
p1ðz�z1Þ p1ðz�z2Þ ⋯ p1ðz�znÞ

⋮ ⋮ ⋱ ⋮
pmðz�z1Þ pmðz�z2Þ ⋯ pmðz�znÞ

2
66664

3
77775: ð16Þ

The correction coefficients can be obtained using the reproducing
conditions of the trial function, and

bðzÞ ¼M�1ðzÞUH; ð17Þ
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