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a  b  s  t  r  a  c  t

Exponential  random  graph  models  are  an  important  tool  in the  statistical  analysis  of  data.  However,
Bayesian  parameter  estimation  for  these  models  is  extremely  challenging,  since  evaluation  of  the
posterior  distribution  typically  involves  the calculation  of  an  intractable  normalizing  constant.  This
barrier  motivates  the  consideration  of tractable  approximations  to  the  likelihood  function,  such  as  the
pseudolikelihood  function,  which  offers  an  approach  to  constructing  such  an  approximation.  Naive  imple-
mentation  of what  we  term  a pseudo-posterior  resulting  from  replacing  the  likelihood  function  in the
posterior  distribution  by  the  pseudolikelihood  is likely  to  give  misleading  inferences.  We  provide  practical
guidelines  to  correct  a sample  from  such  a pseudo-posterior  distribution  so  that  it  is approximately  dis-
tributed  from  the  target  posterior  distribution  and  discuss  the  computational  and  statistical  efficiency  that
result from  this  approach.  We  illustrate  our methodology  through  the  analysis  of  real-world  graphs.  Com-
parisons  against  the  approximate  exchange  algorithm  of  Caimo  and  Friel  (2011)  are  provided,  followed
by  concluding  remarks.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The study of networks is central to a broad range of applications
including epidemiology (dynamics of disease spread), genetics
(protein interactions), telecommunications (worldwide web con-
nectivity, phone calls) and social science (Facebook, Twitter,
LinkedIn), among others. The high-dimensionality and complex-
ity of such structures poses a real challenge to modern statistical
computing methods.

Exponential random graph (ERG) models play an important
role in network analysis since they allow for complex correlation
patterns between the nodes of the network. However this model
presents several difficulties in practice, mainly due to the fact that
likelihood function can only be specified up to a parameter depen-
dent normalizing constant. This impacts upon maximum likelihood
estimation which is difficult to perform for larger networks, where
the full likelihood function is available but it is just too complex to
be evaluated. Robins et al. (2007b) presented various approaches
for overcoming this problem.
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The Bayesian paradigm has been used to infer exponential
random graph models. The challenge of carrying out Bayesian
estimation for these models has received attention from the sta-
tistical community in the recent past (Caimo and Friel, 2011).
The main challenge encountered by such a Bayesian setting is the
evaluation of the posterior that typically involves the calculation
of an intractable normalizing constant. Sampling from distribu-
tions with intractable normalization can be done via Markov chain
Monte Carlo methods (MCMC) and especially with the celebrated
Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings,
1970).

Nevertheless, the normalizing term in the ERG probability dis-
tribution is a function of the model parameters and thus does not
cancel as usual in the standard Metropolis–Hastings acceptance
probability. This gives rise to a target distribution �(� | y) which
is termed doubly-intractable (Murray et al., 2006), where at each
iteration of the Markov chain Monte Carlo scheme intractability
of the normalizing term of the likelihood model within the poste-
rior and intractability of the posterior normalizing term must be
handled. More sophisticated Markov chains, such as the Exchange
algorithm (Møller et al., 2006; Murray et al., 2006) have been pro-
posed to sample from those doubly-intractable targets. Here again,
these methods are not directly applicable in the ERG context as
they require independent and identically distributed (iid) draws
from the likelihood, which is not feasible for this type of models.
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Fig. 1. International E-road Network: marginal density estimates of the posterior distribution (based on a long and computationally expensive MCMC  run) (black curve);
misspecified pseudo-posterior density estimates (where the pseudolikelihood has replaced the likelihood) (red curve); calibrated pseudo-posterior density estimates (blue
curve).  One can see that the calibration step has resulted in density estimates which are very close to the target posterior. (For interpretation of the references to color in this
figure  legend, the reader is referred to the web  version of this article.)

This motivated the approximate exchange algorithm of Caimo
and Friel (2011) which substitutes iid draws from the likelihood
with draws from an auxiliary Markov chain admitting the ERG like-
lihood as limiting distribution. Previous studies have shown that
convergence of sampling from the ERG likelihood through Markov
chain is likely to be exponentially slow (Bhamidi et al., 2011). This
is likely to lead to increased computational burden when analyzing
graphs with complex dependencies.

Increasing computational complexity has motivated the devel-
opment of misspecified but tractable and computationally
affordable models. From this perspective, the computational
tractability of the pseudolikelihood function and the simplicity in
defining the objective function seem to make it a tempting alter-
native to the full likelihood function when dealing with data with
such a complex structure (Robins et al., 2007a; Handcock et al.,
2007). The use of such an approximation to the likelihood should
be treated with caution, though, as discussed by van Duijn et al.
(2009); their work studied the quality of the pseudolikelihood
approximation to the true likelihood, concluding that it may  under-
estimate endogenous network formation processes. Despite its use
by practitioners in the frequentist setting to fit ERG models, little is
known about the pseudolikelihood approximation efficiency when
embedded in a Bayesian posterior distribution. Our empirical anal-
ysis shows that the Bayesian estimators resulting from using the
pseudolikelihood function as a plug-in for the true likelihood func-
tion are biased and their variance can be underestimated. However,
the calibration procedure which we develop shows how to correct
a sample from this so-called pseudo-posterior distribution, so that
it is approximately distributed from the true posterior distribution.

We propose a novel methodology that falls into the area of
MCMC  targeting a misspecified posterior: a Metropolis–Hastings
sampler whose stationary distribution we refer to as a pseudo-
posterior (a posterior distribution where the likelihood is replaced
by a pseudolikelihood approximation). Such a method is fast and
overcomes double intractability but is also noisy, in the sense that it
samples from an approximation of the true posterior distribution,
�. A graphical illustration of marginal posterior densities under
misspecification can be seen in Fig. 1. This example involves a
two-dimensional model which we provide details of in Section
5.2. Here the misspecification of the actual posterior yields a dis-
astrous approximation; compare the black and red curves. It is

evident that a sampler which targets an approximate posterior
resulting from replacing the intractable likelihood with a pseudo-
likelihood approximation leads to biased posterior mean estimates
and considerably underestimated posterior variances. Neverthe-
less, we  will present a correction method that allows to calibrate
the sample to the true density; warping the red to the blue curve
which is now a sensible approximation to the black one.

The aim of this paper is to exploit the use of pseudolikeli-
hoods in Bayesian inference of exponential random graph models.
Our work explores the computational efficiency of the resulting
Markov chains, and the trade-off between computational and sta-
tistical efficiency in estimates derived from such pseudo-posteriors
in comparison to the approximate exchange algorithm of Caimo
and Friel (2011). We  present the reader with a viable approach
to calibrate the posterior distribution resulting from using a mis-
specified likelihood function in an efficient manner (Fig. 1), while
providing the theoretical framework for this approach.

The outline of the article is as follows. A basic description
of exponential random graph models is given in Section 2. The
pseudolikelihood function as a surrogate for the true likelihood is
introduced in Section 3. In Section 4 we formulate the Bayesian
model in the presence of likelihood misspecification, and discuss
the theoretical properties and practical aspects of the calibration of
the posterior distribution. In Section 5, we  illustrate our methods
through numerical examples involving real networks. We  conclude
the paper in Section 6 with final remarks.

2. Exponential random graph models

Networks are relational data represented as graphs, consist-
ing of nodes and edges. Many probability models have been
proposed in order to understand, summarize and forecast the
general structure of graphs by utilizing their local properties.
Among those, Exponential random graph models play an important
role in network analysis since they can represent transitivity and
other structural features in network data that define complicated
dependence patterns not easily modeled by more basic probabil-
ity models (Wasserman and Pattison, 1996, see also Robins et al.,
2007b for a review and the references therein for more details).

Let Y  denote the set of all possible graphs on n nodes. The net-
work topology structure is measured by a n × n random adjacency
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