
Social Networks 49 (2017) 27–36

Contents lists available at ScienceDirect

Social Networks

journa l homepage: www.e lsev ier .com/ locate /socnet

Penalized component hub models

Charles Wekoa, Yunpeng Zhaob,∗,1

a Headquarters, Department of the Army, United States Army, United States
b Department of Statistics, George Mason University, United States

a r t i c l e i n f o

Article history:
Available online 5 December 2016

Keywords:
Social network analysis
Regularization method
Finite mixture model
Hub model

a b s t r a c t

Social network analysis presupposes that observed social behavior is influenced by an unobserved net-
work. Traditional approaches to inferring the latent network use pairwise descriptive statistics that rely
on a variety of measures of co-occurrence. While these techniques have proven useful in a wide range of
applications, the literature does not describe the generating mechanism of the observed data from the
network.

In a previous article, the authors presented a technique which used a finite mixture model as the
connection between the unobserved network and the observed social behavior. This model assumed
that each group was the result of a star graph on a subset of the population. Thus, each group was the
result of a leader who selected members of the population to be in the group. They called these hub
models.

This approach treats the network values as parameters of a model. However, this leads to a general
challenge in estimating parameters which must be addressed. For small datasets there can be far more
parameters to estimate than there are observations. Under these conditions, the estimated network can
be unstable.

In this article, we propose a solution which penalizes the number of nodes which can exert a leadership
role. We implement this as a pseudo-Expectation Maximization algorithm.

We demonstrate this technique through a series of simulations which show that when the number
of leaders is sparse, parameter estimation is improved. Further, we apply this technique to a dataset of
animal behavior and an example of recommender systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Networks consist of discrete nodes or vertices which are con-
nected by links or edges. These pairwise connections are frequently
represented by a square matrix called an adjacency matrix. Net-
work analysis has drawn attention in a wide variety of scientific
and engineering disciplines because of the practicality of the net-
work structure. The applications of networks include concrete
problems such as finding the shortest path through a trans-
portation system or determining the maximum flow through a
n electrical transmission system (Hiller and Lieberman, 2001). The
generality of networks allows for their application to more abstract
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problems such as the propagation of disease or information through
a population (Jackson, 2008). Applications further extend to iden-
tifying key nodes in social networks (Koschützki et al., 2005),
community detection among weblogs on the World Wide Web
(Karrer and Newman, 2011), link prediction in social and biological
networks (Liben-Nowell and Kleinberg, 2007; Zhao et al., 2013),
as well as many others (Kolaczyk, 2009; Goldenberg et al., 2010;
Newman, 2011).

Traditionally, statistical network analysis focuses on modeling
the random generation of observed or explicit network structure.
For physical networks, like communication systems or railway net-
works, the nodes are clearly defined and the links between nodes
can be directly observed (Hiller and Lieberman, 2001; Kolaczyk,
2009; Newman, 2011).

In other fields of research, explicit network structure may not
be observable. This is especially true in the social sciences where
the observed raw data is usually the social behavior instead of an
explicit network structure (Freeman et al., 1989; Whitehead, 2008).
This situation may also occur in the analysis of protein–protein
interaction or gene regulatory networks. In these situations, the
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Table 1
Dataset for six children and three birthday parties, Adapted from (Wasserman and
Faust, 1994).

Party Child

Allison Drew Eliot Keith Ross Sarah

1 1 0 0 0 1 1
2 0 1 1 0 1 1
3 1 0 1 1 1 0

observed behavior is presumed to result from a latent network
structure. For instance, researchers may not directly observe
“friendships” within a population; instead, they may observe some
social behavior (e.g., four people gather together with a certain fre-
quency or they visited each other’s house at least once in a month).

The notion that there is a connection between observable behav-
ior and network structure can be traced to the so-called social
network perspective proposed by Moreno (1934). Wasserman and
Faust (1994) also gave a detailed explanation of this concept. The
central principle of the social network perspective is that a net-
work model governs the action of individual nodes and makes them
behave interdependently. This relationship between behavior and
network structure suggests that the network may be inferred from
such observed behavior. In a previous article, Zhao and Weko (2016)
developed a model which used the network as a parameter for the
random generation of observed behavior.

The construction of latent networks often relies on data struc-
tures generated from surveys in which individuals or researchers
report relationships (Sampson, 1969; Zachary, 1977). In this article
we focus on an alternative type of dataset which is frequently col-
lected in the social sciences and which can be generalized to other
areas of research. Wasserman and Faust (1994) introduce such a
dataset using the example of children attending birthday parties.
In Table 1, the value 1 indicates that a specific child attended a party,
and 0 indicates otherwise. For example, Allison attended Parties 1
and 3 but did not attend Party 2. Whitehead (2008) refers to each
party as a group and Table 1 as a group-by-individual matrix. Zhao
and Weko (2016) referred to this type of data as grouped data.

The existing methods for network inference from grouped data
are essentially descriptive statistics. The most common approach is
to use the frequency of co-occurrence between two nodes to esti-
mate the strength of the link between individuals (Zachary, 1977;
Freeman et al., 1989; Wasserman and Faust, 1994; Kolaczyk, 2009).
We refer to this measure as the co-occurrence matrix. As an alterna-
tive, the half weight index (Dice, 1945; Cairns and Schwager, 1987;
Bejder et al., 1998; Whitehead, 2008) estimates the strength of the
link by the frequency that two nodes co-occur given that one of
them is observed.

One shortcoming of these techniques is that they do not define
how the observed data is generated from the estimated statistics.
A particular challenge is that the probability of co-occurrence is
not equivalent to the probability of connection. For example, in
Table 1 it is possible that two children who do not know each
other attended the same party because they are invited by a mutual
friend. It remains unclear what model assumption justifies the net-
work structure inferred by these measures.

Zhao and Weko (2016) proposed a simplistic generating mech-
anism for grouped data based on a network structure. The hub
model (HM) assumes that each observed group is the result of a
leader bringing together a subset of the population. That is, every
group is brought together by a central node (often referred to as the
leader). The other members of the group are present based on their
relationship to this leader. Thus, the hub model parameters have
an interpretation which can be easily applied to relevant research
questions.

Despite the fact that hub models assume an intuitive generat-
ing mechanism and perform well with sufficient observations, the
number of parameters in the model presents a challenge. If we
let n be the number of nodes in the network, the network con-
tains O(n2) parameters. Therefore, a moderate-sized network (e.g.,
n = 50) would in principle require a large number of observations
to accurately estimate the network.

Moreover, in most practical situations, the central node of each
group is unobserved. Without any prior information, it is possible
for any node in the group to be the central node for that group. Zhao
and Weko (2016) use an Expectation-Maximization (EM) algorithm
to identify the central node for each group. As n increases, the
possibility for larger and larger groups also increases. Thus identi-
fying the central node of such groups can be difficult because there
are many nodes which could be central and the probability of each
node being central can be small.

In practice, it is not necessary to model every node in the
population as a potential leader. For example, there may be low
ranking members of the population who do not have the authority
or influence to initiate a group. This is especially true when the
number of observations is small. Therefore, we propose a penalized
component hub model (PCHM) to reduce the hub model’s complex-
ity. Using a penalized likelihood of hub models, the probability
that a node is a leader is shrunk towards 0 when that probability is
small.

The PCHM assumes sparse parameters. That is, only a small
proportion of the nodes have a non-zero probability of forming a
group. Since the hub model is an example of a finite mixture model,
we essentially penalize the number of components in the mixture
model.

This penalization technique belongs to the class of regulariza-
tion methods which have been extensively studied in the statistical
literature. For example, least absolute shrinkage and selection
operator (LASSO) introduced by Tibshirani (1996) is a famous L1
regularization method for variable selection in linear regression.
Ridge regression (Hoerl and Kennard, 1970) applies L2 regulariza-
tion to reduce the variance of the coefficients estimates and hence
obtains smaller mean square error than least square estimates. Sim-
ilarly in the PCHM case, regularization on the probabilities of nodes
being leaders increases the stability of the estimated networks and
yields better performance when the sample size is limited.

Regularization techniques have been widely used in graphical
models and covariance estimation to obtain a “sparse” estimated
adjacency matrix (Bickel and Levina, 2008; Friedman et al., 2008;
Guo et al., 2010). However, the definition of “sparse” in these tech-
niques is different from the definition we will use. Traditional
techniques define the network structure solely based on an adja-
cency matrix. Thus a “sparse” network is one where the adjacency
matrix contains many elements which are equal to zero. In this
case, regularization of the network is achieved by penalizing the
elements of the adjacency matrix of the network.

Hub models define the network structure using two parame-
ters (a mixing distribution and an adjacency matrix). Under PCHM,
sparsity is defined on the mixing distribution. Thus PCHM penalizes
the probability of nodes being centers. The detailed explanation
motivating this approach will be given in Section 2 and further
elaborated in Section 3.

The rest of this article is organized as follows. We start with a
brief review of hub models to motivate our approach in Section 2.
We propose PCHM and the algorithm for solving the penalized
likelihood in Section 3. In Section 4, we discuss the application
of the Bayesian Information Criterion (BIC) for tuning parame-
ter selection. Simulation studies are provided in Section 5. In
Section 6, we apply the PCHM to a dataset of Hector’s dolphins
(Bejder et al., 1998) and a recommender system in supplemental
materials.
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