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a b s t r a c t

Exponential random graph models (ERGM) behave peculiar in large networks with thousand(s) of actors
(nodes). Standard models containing 2-star or triangle counts as statistics are often unstable leading to
completely full or empty networks. Moreover, numerical methods break down which makes it compli-
cated to apply ERGMs to large networks. In this paper we propose two strategies to circumvent these
obstacles. First, we use a subsampling scheme to obtain (conditionally) independent observations for
model fitting and secondly, we show how linear statistics (like 2-stars etc.) can be replaced by smooth
functional components. These two steps in combination allow to fit stable models to large network data,
which is illustrated by a data example including a residual analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of network data is an emerging field in statistics.
It is challenging both model-wise and computationally. Recently,
Goldenberg et al. (2010), Hunter et al. (2012), Fienberg (2012)
published comprehensive survey articles discussing new statisti-
cal approaches and developments in network data analysis. We
also refer to the monograph of Kolaczyk (2009) for a general
introduction to the field, or the recent book of Lusher et al.
(2013), which focuses on a specific and widely used class of
network models, so-called exponential random graph models
(ERGM).

In its most simple form a network consists of a set of n nodes
(actors) which are potentially linked with each other through edges.
These edges between the actors are thereby the focus of interest.
Notationally a network can be expressed as a n × n (random) adja-
cency matrix Y with entries Yij = 1 if node i and j are connected,
and Yij = 0 otherwise. In undirected networks one has Yij = Yji while
for directed links we have Yij = 1 if a directed edge goes from node
i to node j. For the sake of readability and notional simplicity we
will concentrate here on undirected networks. The term y denotes
a concrete realisation of Y.
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A common and powerful model for network data Y was pro-
posed by Frank and Strauss (1986) as Exponential Random Graph
Model (ERGM) taking the form
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with � = (�0, . . ., �p)t as parameter vector and s(y) = (s0(y), . . ., sp(y))t

as vector of statistics of the network. In Eq. (1) the term �(�) denotes
the normalizing constant, that is
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where Y is the set of all networks and accordingly the sum is
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terms. It is therefore numerically intractable, except
for very small graphs. We denote with s0(y) =

∑n
i=1

∑n
j>i yij

the baseline statistic giving the number of edges in the (undi-
rected) network, so that �0 serves as intercept. The interpretation
of the remaining parameters �l, l = 1, . . ., p, results through the cor-
responding conditional model for each single edge Yij given the
remaining network Y \ Yij, since

logit
[
P

(
Yij = 1|Y\Yij; �

)]
= �0 +

p∑
l=1

�ijsl(y)�l, (2)

where �ijsl(y) = sl(y \ yij, yij = 1) − sl(y \ yij, yij = 0) is the so-called
change statistics which is obtained by flipping the edge between
nodes i and j from non-existent to existent.

http://dx.doi.org/10.1016/j.socnet.2016.12.002
0378-8733/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.socnet.2016.12.002
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.socnet.2016.12.002&domain=pdf
mailto:goeran.kauermann@stat.uni-muenchen.de
dx.doi.org/10.1016/j.socnet.2016.12.002


68 S. Thiemichen, G. Kauermann / Social Networks 49 (2017) 67–80

Exponential random graph models are numerically unstable, in
particular if the number of actors n gets large, and (simple) lin-
ear network statistics like the number of 2-stars or triangles are
included. Hence, for large networks one is faced with two relevant
problems. First, the model itself is in its (simple) linear formula-
tion notoriously unstable leading to either full or empty networks.
This issue is usually called degeneracy problem, see, for example,
Schweinberger (2011), Chatterjee and Diaconis (2013). Secondly,
the estimation is per se numerically demanding or even unfeasible
since numerical simulation routines are too time consuming. We
aim to tackle both problems in this paper. First, we propose the use
of stable statistics which are derived as smooth, non-parametric
curves. Secondly, instead of fitting the model to the entire network
we propose to draw samples from the network adjacency matrix y
such that estimation in each sample is numerically (very) easy.

We emphasize that it is the combination of the two ideas that
allows to fit Exponential Random Graph Models to large and suffi-
ciently dense networks. That is to say that only in large networks
the sampling approach is useful and feasible to provide sufficient
information for estimation. Moreover, especially in large networks
we are faced with instability problems where the proposed smooth,
non-parametric statistics naturally stabilise the model. Hence, even
though the two ideas proposed in this paper are separate, only
their combination makes them really beneficial for network data
analysis.

Schweinberger (2011) denotes network statistics (and the cor-
responding ERGM) as unstable if the statistics is not at least of
order O(n2). In fact he shows that any k-star or triangle statistics
is unstable leading to an odd behaviour of model (1). Effectively,
unstable networks are either complete (i.e. have all possible edges)
or empty (i.e. all nodes are unconnected) unless for a diminishing
subspace of the parameter space for n increasing. If n gets large it is
therefore advisable to replace the statistics in model (1) by stable
statistics of order O(n). A first proposal in this direction are alternat-
ing star and alternating triangle statistics as proposed in Snijders
et al. (2006), or geometrically weighted statistics as proposed in the
context of curved exponential random graph models, see Hunter
and Handcock (2006). Hunter (2007) shows that from a modelling
point of view the alternating statistics are equivalent to geometri-
cally weighted degree or geometrically weighted edgewise shared
partners, respectively. Both approaches stabilize the models but
for the price of less intuitive interpretations of the parameter esti-
mates. We propose an alternative by making use of non-parametric
models based and the technique of smoothing (see, e.g., Ruppert
et al., 2003). The non-parametric model thereby maintains the
interpretability of the ERGM based on the conditional model (2).
To motivate our idea we start with the conditional model (2) and
replace the linear terms through non-linear smooth components.
This leads to the conditional non-parametric model

logit
[
P

(
Yij = 1|Y\Yij

)]
= �0 +

p∑
l=1

ml(�ijsl(y)), (3)

where ml(·) are smooth functions which need to be estimated from
the data. Models of type (3) have been proposed in a simple regres-
sion framework as generalized additive models, see, e.g., Hastie
and Tibshirani (1990), or Wood (2006), but apparently the struc-
ture here is more complex as we are tackling network data. We
additionally need to postulate that functions ml(·) are monotone
and bounded which in turn leads to stable network statistics in
the definition of Schweinberger (2011). We make use of penalized
spline smoothing which also allows to accommodate constraints
on the functional shape leading to stable network models. In fact,
assuming ml(·) to be monotone and bounded, we may derive a non-
parametric exponential random graph model from (3) which takes

the form
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Apparently, model (4) appears rather complex due to its semi-
parametric structure and estimation looks like a challenging task.
We will argue, however, that smoothing techniques can easily be
applied and estimation becomes feasible by making use of sampling
strategies in the network adjacency matrix y leading to numerically
simple likelihoods and in fact consistent (though not efficient) esti-
mates. Note that model (4) comprises 2-star or triangle statistics in
that

ml(�ijsl(y)) =
n∑

k = 1

k /= j

yik +
n∑

k = 1

k /= i

yjk or

ml(�ijsl(y)) =
n∑

k=1

yikykj

Concerning geometrically weighted statistics as proposed by
Snijders et al. (2006) and Hunter (2007), geometrically weighted
degree (GWD) falls in formulation (4), while geometrically
weighted edge-wise shared partners (GWESP) do not. This is due
to the violation of Markov independence of the later as the change
statistic �ijsl(y) does not only depend on the direct neighbourhood
of yij but the rest of the network as well.

Estimation in exponential random graph models is cumbersome
and numerically demanding as it requires simulation based rout-
ines. Snijders (2002) suggests the calculation of ∂�(�)/∂� in the
score equation resulting from (1) using stochastic approximation.
Hunter and Handcock (2006) propose to use MCMC methods in
order to obtain the maximum likelihood estimate. The approach is
extended and improved in Hummel et al. (2012). In a recent paper
Caimo and Friel (2011) develop a fully Bayesian estimation routine
by incorporating the so-called exchange algorithm from Murray
et al. (2006) which circumvents the calculation or approximation of
the normalisation constant for the price of extended MCMC samp-
ling. A general survey of available routines for fitting Exponential
Random Graph Models is given in Hunter et al. (2012). In fact, if
the network is large, MCMC based routines readily become numer-
ically infeasible. As aforementioned, we will therefore make use
of subsampling the network adjacency matrix and fit the model
to subsamples that allow for simple likelihoods. We follow ideas of
Koskinen and Daraganova (2013). In fact, for models with k-stars or
triangles only, the edges follow a Markovian independence struc-
ture by conditioning on parts of the network (see Frank and Strauss,
1986, or Whittaker, 2009). This is exemplified in a simple network
with four nodes in Fig. 1. Conditioning on edges Y12, Y14, Y23, and
Y34 we find that Y13 and Y24 are conditionally independent, which

Fig. 1. Visualisation of the induced Markov independence graph (right) for an expo-
nential random graph model for a simple 4-node network (left).
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