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a b s t r a c t

The singular boundary method (SBM) is a recent strong-form boundary discretization numerical
technique and can be viewed as one kind of modified method of fundamental solutions (MFSs).
Although the method has been successfully used in many fields of engineering analysis, there has been
no attempt yet to present a work discussing the mathematical background of the method. This paper fills
this gap in the SBM and documents the first attempt to apply the method to the solution of orthotropic
elastic problems. Three benchmark numerical problems are tested to demonstrate the feasibility and
accuracy of the proposed method through detailed comparisons with the MFS and the boundary element
method (BEM).

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The singular boundary method (SBM) has emerged as an effective
meshless boundary collocation method for the solution of certain
boundary value problems. This method, based on the notion of
boundary element method (BEM) [1–3] and MFS [4–8], fully inherits
the merits of both and in the meantime possessing its unique
advantages. First, it does not involve integration which could be
otherwise troublesome and expensive as in the BEM-based methods.
Second, it sidesteps the fictitious boundary issue associated with the
traditional MFS by means of a concept of the origin intensity factor, a
numerical strategy that isolates singularities of the fundamental
solutions and allows the source and collocation points coincide on
the real boundary. The ease of implementation and its low computa-
tional cost make the method a competitive alternative for certain
boundary value problems. Comprehensive reviews on the SBM for
various applications can be found in Refs. [9–12]. Although the
method has been successfully used in many fields of engineering
analysis, the mathematical background of the method has not, as yet,
been discussed.

One of the aims of the present paper is to fill the gap
mentioned above and present a relatively detailed theoretical
background of this methodology. Related issues in the SBM, such
as the existence of the origin intensity factors and their numerical

evaluation, will be discussed in detail. This paper also documents
the first attempt to extend the method to general orthotropic
elastic problems. The study of boundary value problems for
orthotropic elastic materials has received considerable attention
in recent years [13,14]. This interest is partly related to the
extensive use of composite materials in various engineering
applications, like wood, reinforced concrete, and all materials that
are reinforced with fibers.

A brief outline of the rest of this paper is as follows. In Section
2, we describe the traditional MFS formulation for the solution of
2D orthotropic elastic problems. The SBM formulation and its
mathematical background are discussed in details in Section 3.
And then in Section 4 the method is tested successfully over three
benchmark numerical problems. Finally, the conclusions and
remarks are provided in Section 5.

2. MFS formulation for orthotropic elastic problems

For the assumption of plane stress distribution in an ortho-
tropic material, Hooke's law takes the form (matrix representa-
tion)
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where the stress sij and strain εij are mean values taken through
the thickness of the material; Sij(i,j¼1,2) and S66 are flexibility
coefficients; E1 and E2 are Young's moduli in the directions of x1
and x2 axes; G12 denotes the shear modulus for planes parallel to
the x1�x2 plane; v12 is Poisson's ratio characterizing the contrac-
tion in the direction of the x2 axis when tension is applied in the
direction of the x1 axis.

The Navier–Cauchy equations for plane orthotropic materials,
in the absence of body forces, referring to displacements u1 and u2
are [15]

C11
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∂2u2ðxÞ
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in which C11¼S22/D, C12¼�S12/D, C22¼S11/D, C66¼1/S66,
D¼ S11S22�S212.

These are subject to the boundary conditions

uiðxÞ ¼ ui; xAΓuðDirichlet boundary conditionsÞ; ð3aÞ

tiðxÞ ¼ ti; xAΓtðNeumann boundary conditionsÞ; ð3bÞ
where ti(x) denotes the component of boundary traction in the ith
coordinate direction, Γu and Γt construct the whole boundary of
the domain Ω which we shall assume to be piecewise smooth, ui

and ti represent the prescribed displacements and tractions,
respectively.

Employing indicial notation for the coordinates of points
x¼(x1,x2) and y¼(y1,y2), respectively, the Kelvin fundamental
solutions of the systems (2) and (3) can be expressed as [15]
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where α1 and α2 satisfy

α1þα2 ¼ ð2S12þS66Þ=S22; α1α2 ¼ S11=S22;

and

K ¼ 1=½2πðα1�α2ÞS22�; Ai ¼ S12�αiS22; ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αiðx1�y1Þ2þðx2�y2Þ2

q
:

The fundamental solution Uij(y,x) described above indicates the
displacement produced at point y by a concentrated unit body
force applied at point x, in which the first subscript (i) denotes the
direction of the displacement whereas the second one (j) denotes
the direction of the unit force. The fundamental solution of the
tractions can be obtained by first calculating the fundamental
solutions of strains and then applying Hooke's law
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By employing the radial basis functions (RBFs) technique [16–19],
the displacements and stresses can be approximated by linear
combinations of fundamental solutions with respect to different
source points x as follows:

uiðymÞ ¼ ∑
N

n ¼ 1
ajðxnÞUijðym; xnÞ ¼ ∑

N

n ¼ 1
½a1ðxnÞUi1ðym; xnÞ

þa2ðxnÞUi2ðym; xnÞ�; ð6aÞ

tiðymÞ ¼ ∑
N

n ¼ 1
ajðxnÞTijðym; xnÞ ¼ ∑

N

n ¼ 1
½a1ðxnÞTi1ðym; xnÞ

þa2ðxnÞTi2ðym; xnÞ� ð6bÞ
where i,j¼1,2, N is the specified number of sources, ymAΩ¼Ω [
∂Ω is the mth collocation points, xn is the nth source point,
fa1ðxnÞgNn ¼ 1 and fa2ðxnÞgNn ¼ 1 denote the unknown coefficients.

In the traditional MFS, a fictitious boundary slightly outside the
problem domain is required in order to place the source points
and avoid the singularity of the fundamental solutions. These
source points are either pre-assigned or taken to be part of the
unknowns of the problem along with the coefficients fajðxnÞgNn ¼ 1.
In either case, the unknowns are determined so that the approx-
imations (6) satisfy, in some sense, the boundary conditions (3) as
close as possible [20,21]. In the early applications of the MFS, the
locations of the source points were determined by a non-linear
system of the equations that can be solved using a non-linear
least-squares minimization software. This approach, however, has
attracted limited attention primarily because of its high computa-
tional costs and the criticism that a linear boundary value problem
is converted to a non-linear discrete problem. In the more
established approach these days the source points are pre-
assigned, collocation simply leads to a linear system of M equa-
tions in N unknowns which can be solved by a least-squares solver.
However, despite many years of focused research, the pre-
determination of the fictitious boundary is largely based on
experiences and therefore often troublesome, especially for com-
plicated higher dimensional domain problems [22–27]. This draw-
back severely downplays the applicability of the MFS to real-world
applications.

3. Singular boundary method: mathematical background
and numerical implementation

The basic idea of the SBM is to introduce a concept of the origin
intensity factor to isolate the singularity of the fundamental
solutions, so that the source points can be directly placed on the
real boundary [10]. With this idea in mind the SBM interpolation
can be expressed as

uiðymÞ ¼ ∑
N

n¼ 1
man

ajðxnÞUijðym; xnÞþajðxmÞAijðxmÞ; ð7Þ

tiðymÞ ¼ ∑
N

n¼ 1
man

ajðxnÞTijðym; xnÞþajðxmÞBijðxmÞ; ð8Þ

where ymAΓ, AijðxmÞ and BijðxmÞ are defined as the origin intensity
factors, i.e., the diagonal and sub-diagonal elements of the SBM
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