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a b s t r a c t

This paper presents a meshless method called the improved boundary distributed source (IBDS) method
to obtain the numerical solution of an electrical resistance tomography (ERT) forward problem. The ERT
forward problem contains solving the Laplace equation on piece-wise homogeneous domain subjected to
the mixed boundary conditions with constraints of integral form. The IBDS method is mesh-free and does
not require a fictitious boundary for source points as in the case of a conventional method of funda-
mental solution (MFS) approach. Therefore, it can be used for a wide variety of applications involving
complex shaped objects that are difficult to mesh. Also, in the IBDS method, the diagonal elements for
Neumann boundary conditions are computed analytically unlike the original BDS method. Therefore, the
IBDS method is computationally efficient and stable compared to the BDS method. The ERT forward
problem to compute the boundary voltages is formulated using a meshless IBDS method. Several
numerical examples are tested to demonstrate the feasibility and accuracy of the new formulation. The
results are compared with that of standard numerical forward solvers for ERT such as the boundary
element method (BEM) and the finite element method (FEM).

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Electrical resistance tomography (ERT) is a non-invasive ima-
ging technique to reconstruct the conductivity/resistivity distribu-
tion inside the domain of interest [1]. ERT image reconstruction is
acquired from the relationship between injected currents and
measured voltages through the electrodes that are discretely
attached on the outer boundary of domain of interest [2–4]. If
the conductivities of inclusion and background are assumed to be
known and time invariant then the forward problem is to estimate
the shape and location of inclusions [5–8]. ERT image reconstruc-
tion includes iteratively solving forward and inverse problems.
The forward problem is to calculate the potential distribution for a
known conductivity distribution with a certain boundary condi-
tion. The most realistic mathematical model of ERT is the complete
electrode model (CEM) which takes into account the shunting
effect and the contact impedance between the electrode and the
substance of the domain [9,10].

Currently, the ERT forward solvers are mainly based on the
finite element method (FEM) [5–8,11–15] or the boundary element
method (BEM) [16–20]. Boundary estimation with the mesh based
methods such as FEM in ERT is reported in [5–8,15]. However, with
mesh based methods, with inclusions in the domain, the situation
of mesh crossing elements can occur therefore it can lead to errors
in computing the area weighted conductivities. This situation can
be prevented if a very fine mesh is chosen or if it is meshed
whenever the boundary of inclusion is changed such that there is
no mesh crossing elements. Adaptive meshing can improve the
accuracy but it results in an increase of computational burden
therefore it is not a wise idea. Also, meshing is a tedious task
especially if there is a complicated shape. The boundary element
method that discretizes the boundaries alone is more suitable for
shape estimation problems moreover it reduces the dimension by
one. However, even BEM involves discretizing boundaries into line
segments and boundary integrals are to be computed over the
boundary therefore the computational cost is still high. In contrast,
to avoid the disadvantages of mesh based methods, a comparably
new class of numerical methods have been developed which
approximates the partial differential equations based on a set of
nodes without the need for an additional mesh, called mesh-free
methods or meshless methods (MMs).
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Many mesh-free (or meshless) methods have been proposed
and achieved remarkable progress over the last few decades
[21–37]. Among the mesh-free methods, the method of funda-
mental solutions (MFS) has attracted an increasing attention in
many engineering and science fields [27–30]. The MFS approx-
imates the solution of the problem as a linear combination of
fundamental solutions of the governing differential operator.
However, the conventional MFS approach requires a fictitious
boundary outside the problem domain to place the source points
due to singularity of the fundamental solution [27,28]. The
determination of fictitious boundary is not trivial [28]. To over-
come this main drawback of the MFS, several methods such as the
modified method of fundamental solutions (MMFS) [28–31], the
singular boundary method (SBM) [32–34], and the boundary
distributed source (BDS) method [35–36] have been proposed.
The key point of SBM is to evaluate the origin intensity factor to
isolate the singularity of the fundamental solution based on
subtracting and adding-back technique as well as the inverse
interpolation technique. In the BDS method to avoid the singula-
rities of the fundamental solution at source points a distributed
source is considered. The distributed sources are circles in two-
dimensions (2D) or spheres in three-dimensions (3D). In the BDS
method, all elements of the system matrix can be derived
analytically for the Dirichlet boundary conditions without singu-
larity. For the Neumann type boundary conditions, while the off-
diagonal elements are determined analytically, the diagonal ele-
ments are obtained indirectly from the constant potential field
[28,35,36]. The determination of diagonal elements requires sol-
ving the system equations thus the computation time is more and
also the solution is not stable. Recently, Kim [37] suggested an
improved BDS (IBDS) method for the Laplace equations to deter-
mine the off-diagonal elements for the Neumann boundary con-
ditions by using the fact that the integration of the normal
derivative of the potential function over the domain boundary
should vanish. In doing so, the IBDS method can remove the
procedure to determine indirectly the diagonal elements for the
Neumann boundary conditions.

This paper presents a meshless solution based on the IBDS
method for solving the ERT forward problem. The domain is
considered to be composed of more than two substances with
different electrical conductivities. IBDS with a complete electrode
model is derived to solve the ERT forward problem. The IBDS
formulation for ERT forward problem is tested with several numer-
ical examples for homogeneous and inhomogeneous domains. The
performance of IBDS is compared against the domain and mesh
based methods such as BEM and FEM. The results show a promising
performance of the IBDS method as an ERT forward solver.

2. Mathematical formulation

2.1. Mathematical model for ERT

In the ERT, a set of discrete electrical currents Il ðl¼ 1;2;…; LÞ is
injected through an array of electrodes el ðl¼ 1;2; :::; LÞ attached on
the circumference of the domain ∂Ω and the excited voltages are
measured on those electrodes. Assuming, an inclusion of conduc-
tivity sa occupying region D with a boundary ∂D is enclosed within
the domain Ω having background conductivity sb, as shown in
Fig. 1. The conductivity distribution inside the domain Ω can be
represented as

sðpÞ ¼ sbþðsa�sbÞχDðpÞ ¼sbþμχDðpÞ in ΩAℜ2; ð1Þ
where p refers to the spatial location inside the domain Ω and χDðpÞ
is a characteristic function of D, such that its value is 1 on D and
0 otherwise. If the conductivity distribution s in Ω is known, then

the corresponding electrical potential u on the domain Ω can be
determined from the partial differential equation, which is derived
from the Maxwell equations, given by

∇Us∇uðpÞ ¼ 0 in Ω ð2Þ
subjected to the following boundary conditions based on the
complete electrode model (CEM) [9]:

sb
∂ub

∂ν
¼ 0 on ∂Ω n [ L

ℓ ¼ 1eℓ; ð3Þ

Z
el
sb

∂ub

∂ν
dS¼ Il on el ðl¼ 1;2;…; LÞ; ð4Þ

ubþzlsb
∂ub

∂ν
¼ Ul on el ðl¼ 1;2;…; LÞ: ð5Þ

In the above equations, zl is the effective contact impedance
between the lth electrode and the electrolyte, Ul is the boundary
voltage measured on the lth electrode, and v is the outward unit
normal. The interfacial boundary condition on the inclusion bound-
ary ∂D is given by the following equation:

sb
∂ub

∂ν
¼ sa

∂ua

∂ν
and ub ¼ ua on ∂D; ð6Þ

where ub and ua are the voltage potentials on the background Ω n D
and the inclusion D, respectively. The outer boundary ∂Ω consists of
electrode boundaries and gap boundaries, i.e. ∂Ω¼ ∂ΩEþ∂ΩG where
∂ΩE ¼ [ L

l ¼ 1 el and ∂ΩG ¼ ∂Ω n [ L
l ¼ 1el ¼ [ L

l ¼ 1 gl (Fig. 1). Also, we
need the following constraints to ensure the existence and the
uniqueness of the solution [10]:

∑
L

l ¼ 1
Il ¼ 0 and ∑

L

l ¼ 1
Ul ¼ 0: ð7Þ

2.2. Formulation of the improved boundary distributed source (IBDS)
method

In the BDS method [35–36], a number of source points pj
(j¼ 1;2;…;N) are selected along the domain boundary. The solu-
tion u(p) at a certain field point p is expressed as a linear
combination of the fundamental solution integrated over a circle
AðpjÞ (as shown in Fig. 2) with a radius of Rj and centered at the
selected source point pj, i.e.

uðpÞ ¼ ∑
N

j ¼ 1

Z
AðpjÞ

Gðp; sÞ dA ðsÞμj ¼ ∑
N

j ¼ 1

~Gðp; pjÞμj; pAΩ and pjA∂Ω

ð8Þ
where μj are the unknown source densities to be determined, Ω is
the closure of the domain Ω, G is the fundamental solution of
Laplace equation, and ~G is the integration of fundamental solution
G over circular disk. The fundamental solution in 2D for the
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Fig. 1. A schematic diagram of ERT with 16 electrodes placed on the outer
boundary.
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