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a b s t r a c t 

Nowadays, traffic management has become a challenge for urban areas, which are covering 

larger geographic spaces and facing the generation of different kinds of traffic data. This 

article presents a robust traffic estimation framework for highways modeled by a system 

of Lighthill Whitham Richards equations that is able to assimilate different sensor data 

available. We first present an equivalent formulation of the problem using a Hamilton–

Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints 

resulting from the Hamilton–Jacobi equation are linear ones. We then pose the problem of 

estimating the traffic density given incomplete and inaccurate traffic data as a Mixed In- 

teger Program. We then extend the density estimation framework to highway networks 

with any available data constraint and modeling junctions. Finally, we present a travel 

estimation application for a small network using real traffic measurements obtained ob- 

tained during Mobile Century traffic experiment, and comparing the results with ground 

truth data. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Transportation research is currently at a tipping point; the emergence of new transformative technologies and systems, 

such as vehicle connectivity, automation, shared-mobility, and advanced sensing is rapidly changing the individual mobil- 

ity and accessibility. This will fundamentally transform how transportation planning and operations should be conducted 

to enable smart and connected communities. The transport systems can be highly beneficiated and become safer, more 

efficient and reliable. Nowadays, dynamic routing and traffic-dependent navigation services are available for users. Such ap- 

plications need to estimate the present traffic situation and that of the near future at a forecasting horizon based on data 

that are available in real-time. Traffic state estimation for a road network refers to estimate all the traffic variables (e.g. cars 

density, speed) of the network at an instant of time based of traffic measurements. This is, for a limited amount of traffic 

data the estimator obtains a complete view of the traffic scenario. This estimation requires the fusion or traffic data and 

traffic models, the latter are typically formulated as partial differential equations (PDEs). For this framework, we will use 

the Lighthill–Whitham–Richards (LWR) partial differential equation ( Lighthill and Whitham, 1956; Richards, 1956 ) which is 

commonly used to model highway traffic; derivating the model constraints is a complex problem. Other estimation tech- 
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niques such as Extended Kalman Filtering ( Alvarez-Icaza et al., 2004 ) (EKF), Ensemble Kalman Filtering ( Work et al., 2010 ) or 

Particle Filtering (PF) rely on approximations to determine the model constraints, either through linearization or sampling. 

Recent estimation traffic network techniques involve the Link Transmission Model (LTM) ( Yperman et al., 2005; Jin, 2015 ) 

in which the Lax-Hopf formula is used to compute the demand and supply of the links and invariant junction models are 

used to calculate the boundary flows. Traffic estimation on a freeway segment using heterogeneous data set has also been 

addressed on Deng et al. (2013) , is based on the establishment of a cumulative vehicle count-based state estimation models 

for using AVI and GPS data. Along this line, in Nantes et al. (2016) the fusion of three heterogeneous data sources on a single 

EKF-based estimator was proposed,they provided a comprehensive analysis of the estimation accuracy using data from loop 

detectors, GPS and Bluetooth scanners. 

No approximation of the model is required by the framework presented on this article. An example of the usage of this 

framework is determining the ranges input flows (or any convex function of the boundary data) compatible with the traffic 

model and measurement data. The exact estimation technique presented in this paper is based on the Moskowitz function 

( Moskowitz, 1965; Newell, 1993 ); it is used here as an intermediate computational abstraction. The Moskowitz function can 

be understood as the integral form of the density function, and solves an Hamilton–Jacobi (HJ) PDE, whereas the density 

function itself solves the LWR PDE. An advantage of using the HJ PDE is that its solutions can be expressed semi analytically 

( Claudel and Bayen, 2010 ), which enables the derivation of the model constraints explicitly. We will now summarize the key 

differences between our estimation approach and the works presented earlier on this section: 

• Kalman filtering considers Gaussian model noise, which is not considered in this approach. It is also considering a Gaus- 

sian error model (probabilistic), whereas the present algorithm considers a deterministic error model (for example L1, L2 

or L infinity error under some threshold). Note that the present algorithm can also adjust the confidence we put on the 

data, which can be a term in the objective function 

• In the context of the triangular diagram, the Extended Kalman filter requires mode identification (as in Munoz et al., 

2003 ). Other approaches can be used, such as the EnKF, which do not require mode identification ( Piccoli and Bayen, 

2010 ). 
• Virtually all approaches are based on the CTM (the discretized LWR model), which introduces discretization errors, unlike 

the approach used in the present article 
• Incorporating travel time constraints requires the integration of velocities over multiple time steps, which can slow down 

Kalman Filter approaches significantly. In addition, the integration errors cause an additional amount of uncontrolled 

errors when incorporating the travel time constraints, unlike the proposed approach. 
• The present approach is not a minimum mean square error estimator: the objective of the optimization problem can be 

chosen freely, allowing different types of problem to be solved, for instance to solve L1 norm minimization problems, to 

find traffic state estimates that are as sparse as possible. 

1.1. Contributions of the article 

The present article builds on Canepa and Claudel (2012) , Canepa et al. (2013) , Li et al. (2014a ), Li et al. (2014b ) and 

Anderson et al. (2013) which introduced a Mixed Integer Linear Programming framework for solving data assimilation and 

data reconciliation problems, for specific objective functions. In the present article, the framework initially described in 

Canepa and Claudel (2012) is extended to network traffic density estimation. The present article has the following contribu- 

tions over the previous work presented in Canepa and Claudel (2012) : 

• The integration of internal traffic density data, or arbitrary travel time data (not necessarily defined as the travel time 

required to cross the entire physical domain), which was not considered in earlier articles ( Canepa and Claudel, 2012; 

Canepa et al., 2013 ). 
• The extension of the traffic state estimation framework defined in Canepa and Claudel (2012) and Canepa et al. (2013) to 

transportation networks, which require the proper modeling of junctions, and the integration of the entropy condition 

to junction flows. 
• The formulation of estimation problems that do not involve a minimum variance estimation, unlike classical estimation 

schemes derived from the Kalman Filter. Examples of non minimum variance estimation include compressed sensing ( L 1 
norm minimization), shown in Section 6 . 

The outline of this article is the following. In Section 2 we define the solution to the LWR PDE and its equivalent for- 

mulation as a HJ PDE. In Section 3 , we recall the analytical expressions of the solutions to HJ PDEs for the triangular flux 

functions investigated in this article, and show that the LWR PDE constraints correspond to convex constraints in the un- 

known initial, boundary and internal condition parameters. A first estimation example is shown in Section 4 , using boundary 

and internal conditions from measurement data the unknown initial conditions are estimated. The framework is extended to 

Highway Networks in Section 6 , where we also validated it using experimental traffic flow data (e.g. density, point velocity 

and travel time) collected during the Mobile Century traffic experiment. 
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