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a b s t r a c t

In this work, a plate bending formulation of the boundary element method (BEM) based on the

Reissner’s hypothesis to perform linear analysis of plates reinforced by rectangular beams is extended

to consider the beams not displayed over their middle surface. Therefore eccentricity effects are taken

into account. The building floor structure is modelled as a stiffened plate which is treated as a single

body without dividing it into beam and plate elements. Moreover the equilibrium and compatibility

conditions are automatically imposed by the integral equations. In the proposed model the final system

of equation is obtained by coupling the bending problem to the stretching problem. Besides, in order to

reduce the number of degrees of freedom, both the displacements and tractions are approximated

along the beam width, leading to a model where the values are defined on the beams axis. In order

to validate the proposed formulation, the numerical results are compared to a well know finite

element code.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) has already proved to be
a suitable numerical tool to deal with plate bending problems.
The method is particularly recommended to evaluate internal
force concentrations due to loads distributed over small regions
that very often appear in practical problems. Moreover, the same
order of errors is expected when computing deflections, slopes,
moments and shear forces. Shear forces, for instance, are much
better evaluated when compared with other numerical methods.
They are not obtained by differentiating approximation function
as for other numerical techniques.

The direct BEM formulation applied to Kirchhoff’s plates has
appeared in the seventies [1–3]. Soon later, in 1982, Weeën [4,5]
presented a BEM formulation based on Reissner’s theory to
perform plate bending analysis. In [6] Katsikadelis and Yotis
developed a BEM formulation for Reissner’s model written in
terms of a biharmonic potential and one Bessel potential as well.
A connection between the classical (Kirchhoff’s) and Reissner–
Mindlin models is established by Palermo in [7] where the
solution for bending plate analysis by considering a BEM
formulation can be obtained with any of these models. It is also

worth mentioning two edited books [8,9] containing BEM for-
mulations applied to plate bending showing several important
applications in the engineering context. Recently, some works
have been proposed to analyse the bending problem by the BEM
but considering different fundamental solutions. As example, in
[10] Soares et al. developed a BEM formulation for analysing the
plate bending problem by the Reissner’s theory where rigid body
movements have been introduced to the generalised displace-
ment fundamental solution, resulting in modified boundary ele-
ment matrices with inherent equilibrium satisfaction. In the work
of Litewka and Sygulski [11] a BEM direct formulation considering
the fundamental solutions of Ganowicz [12] is presented to
analyse thin or moderately thick plates with various shapes,
including plates with holes. Guimar~aes and Telles present in
[13] the application of the method of fundamental solutions
(MFS), a mesh-free technique, to solve cracked Reissner’s plates.

Using BEM coupled with the finite element method (FEM) is
the natural numerical procedure to analyse plate reinforced by
beams, where the BEM is used to represent the plate elements
and the FEM to approximate the beam elements. Regarding this
numerical technique several formulations have already been
proposed, as example the works [14–16]. However, for complex
floor structures the number of degrees of freedom may increase
rapidly diminishing the solution accuracy.

On the other hand there are some works where BEM is not
coupled with FEM, therefore boundary elements are chosen to
model both plate and beam elements. In the works published by
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Song et al. [17] and Hartmann and Zotemantel [18] have shown
interesting BEM approaches to deal with building frame floors,
where displacement restrictions at internal points and the use of
hermitian interpolations are discussed in details. In [19–21] BEM
formulations for analysing the bending problem of beam-stif-
fened elastic plates are proposed. Paiva and Aliabadi present in
[22] a BEM formulation to analyse building floors structures
which are modelled by a zoned plate with different thicknesses.
In [23] the same authors present a formulation for zoned plates
where the boundary integral equations of curvatures of points
located at the zone’s interfaces are deduced in a very easy way
allowing getting the bending moments at these points easily.
A BEM formulation for building floor structures in which the
eccentricity effects are considered and the warping influence
arising from both shear forces and twisting moments is taken
into account is presented by Sapountzakis and Mokos in [24]. In
[25,26] Venturini and Waidemam develop BEM formulations for
elastoplastic analysis of reinforced plates and in [27] the same
authors extend the previous formulation for considering geo-
metric non-linearity as well. Wutzow present in [28] a non-linear
BEM formulation for analysing reinforced porous materials,
where the beam elements are modelled by the Reissner’s theory
applied to shell elements.

An alternative scheme to reduce the number of degrees of
freedom has been proposed by Fernandes and Venturini [29] to
perform simple bending analysis using a BEM formulation based
on Kirchhoff’s hypothesis. In the model proposed in [29], as well
as in the BEM formulation based on Reissner’s theory developed
in [30] by Fernandes and Konda, the building floor is modelled by
a zoned plate where each sub-region defines a beam or a slab.
However, in [29] the bending tractions are eliminated along the
interfaces, differently of the formulation proposed in [30], where
those values cannot be eliminated. In order to reduce the degrees
of freedom, some approximations for both displacements and
tractions are adopted in [30] along the beam width, while in [29]
only approximations for displacements are required since there
are no tractions along interfaces. Those composed structure
proposed in [29,30] are treated as a single body, being the
equilibrium and compatibility conditions automatically taken
into account. Then to consider the case of all beams and slabs
being displayed over a same reference surface, in [31] the
formulation developed in [29] is extended to incorporate the
membrane effects. As the in-plane tractions are not eliminated on
the interfaces, in [31] besides the bending displacements, the in-
plane tractions and displacements have also to be approximated
along the beam cross section to define the values on the beam
skeleton line instead of interfaces.

In this work the BEM formulation considering the Reissner’s
theory and developed in [30], for simple bending analysis of building
floor structures, is extended in order to consider the membrane
effects, so that all sub-regions can be displayed over a same
reference surface. Note that in the classical theory (Kirchhoff’s)
[32], which is appropriated for thin plates, are defined with four
boundary values, besides the corner reactions: the bending moment
Mn, the effective shear force Vn, the deflection w and its derivative
w,n, n being the plate boundary normal direction. The inaccuracy of
the classical theory turns out to be important for thick plates,
especially in the edge zone of the plate and around holes whose
diameter is not larger than the plate thickness. The Reissner’s theory
[33], which can be used either for thin or thick plates, takes into
account the shear deformation effect, being defined with six
boundary values: the moments Mn and Mns, the shear force Qn, the
rotations fn and fs and the deflection w, s being the plate boundary
tangential direction. In order to reduce the number of degrees of
freedom, the tractions and displacements for both stretching and
bending problems are approximated along the beam width, result-
ing to a model where the values are defined on the beams skeleton
lines and on the plate boundary without beams. The accuracy of the
proposed model is illustrated by numerical examples whose results
are compared to a well known finite element code.

2. Basic equations

Without loss of generality, let us consider the three sub-region
plate depicted in Fig. 1, where h1, h2 and h3 are the sub-regions
thicknesses. The sub-regions are referred to as Cartesian system
of co-ordinates with axes x1, x2 and x3 defined on a reference
surface. The plate sub-domains assumed as isolated plates are
denoted by: O1, O2 and O3, with boundaries G1, G2 and G3,
respectively. The distances of the corresponding sub-region
middle surface to the reference one are given by c1, c2 and c3.
Alternatively, when the whole solid is considered, G gives the
total external boundary, while Gjk represents interfaces, for which
the subscripts denote the adjacent sub-regions (see Fig. 1).

Let us consider initially, the bending problem. For a point
placed at any of those plate sub-regions, the plate equilibrium
equations in terms of internal forces are given by:

Mij,j�Qi ¼ 0 i,j¼ 1,2 ð1Þ

Qi,iþg ¼ 0 ð2Þ

where g is the distributed load acting on the plate middle surface,
mij are bending and twisting moments and Qi represents shear
forces.
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Fig. 1. (a) General zoned plate domain; (b) Reference surface view.
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