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a b s t r a c t 

We consider the problem of allocating costs of a regional transit system to its users, who 

employ shortest path routes between all pairs of nodes in the system network. We provide 

an axiomatic set of conditions that a solution should satisfy and use cooperative game the- 

ory to model the cost allocation problem. We provide an allocation, called the equal cost 

share solution, which is efficient to compute and is the unique solution that satisfies the 

conditions. In addition, we show not only that the cost allocation game has a nonempty 

core, but further, that the game is concave, meaning that the Shapley value allocation, 

which coincides with the equal cost share solution, always lies in the core of the game. 

We provide an application of the equal cost share solution to the Washington, D.C. Metro 

transit network and compare it to the existing fare pricing structure. As compared to equal 

cost share pricing, the Metro overcharges for short downtown trips and undercharges for 

very long commutes. The equal cost share solution is easy to update in real time as the 

cost data and user distribution change, or when the transit network expands. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The problem of allocating costs of rapid-transit rail systems that serve metropolitan areas is an ongoing challenge for 

local transportation authorities. In some transit systems, users pay a uniform fee to enter the rail system, no matter how 

far they travel. Other transit systems attempt to charge users in a roughly proportional fashion, by partitioning the stations 

into zones that radiate outward from the downtown region. Still other transit systems employ a more sophisticated fee 

structure where differential fares are charged for point-to-point journeys. As technology improves and smart cards become 

less expensive to manage, it is natural to expect the point-to-point approach to gradually become universal. In this light, 

the present paper proposes the use of cooperative game theory to allocate the costs of rapid-transit systems to their users 

in an equitable fashion. 

We consider a well-defined metropolitan area in which a population of rail users makes trips on a rapid-transit system. 

The stations are connected to one another through a network of rail links, and we make the assumption that users who 

originate at a particular station will want to utilize the most efficient, or shortest, series of available links to reach their 

destinations. To provide these journeys will require the ability to design a shortest path network from each node in the 

transportation system to all other nodes. A polynomial time algorithm to determine the shortest path from one node to all 

others in a network was given by Dijkstra (1959) . The problem of finding all shortest paths in a network was efficiently 

solved by Floyd (1962) , using a result of Warshall (1962) , and further work was done by Dantzig (1966), Moffat and Takaoka 

(1987) , and Wang et al., (2005) , among others. 
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While it is easy to provide the shortest path in the transportation network for any user, our primary focus in this paper 

is to fairly allocate the costs of building and maintaining the rail network among the participating users. Our contribution is 

to provide a fair cost allocation, which is acceptable to all users and communities and can be computed efficiently, for each 

point-to-point journey in the transit system. 

There exists an extensive literature on shortest path networks, but there is limited research on the type of cost allocation 

problem that we consider here. Fragnelli et al., (20 0 0a) study shortest path games where profit is generated from transport- 

ing goods across a network, and Fragnelli et al., (20 0 0b) study “infrastructure games” on rail systems, where the objective 

is to share costs among multiple transport operators, a different application from the present problem. Analogous work on 

sharing the costs of a linear highway was carried out by Kuipers et al., (2013) . Grahn (2001) and Voorneveld and Grahn 

(2002) consider cooperative games on transportation networks where coalitions attempt to maximize profit derived from 

transport across the routes that they own, while Nebel (2010) considers the computational complexity of a model related 

to those of Voorneveld–Grahn and Fragnelli et al., (20 0 0a) . Rosenthal (2013) provides a Shapley value solution to a similar 

type of problem that we study here, but the results are restricted to tree networks. 

In related transportation research, Schöbel and Schwarze (2006) examine networks where players attempt to minimize 

their costs, which arise from traffic on their links. Laporte et al., (2010) study railway design with possible link failures 

and alternate modes to offset the failed links, while Laporte et al., (2011) consider metropolitan area network planning 

and develop networks according to multiple objectives. Cappanera and Scappara (2011) employ game theory to allocate 

protective resources to a network to minimize disruptive effects like traffic delays. 

In a telecommunications application, Hershberger and Suri (2001) looked at sending data along a shortest path, using 

Vickrey pricing to determine how much one path can save over the next best route. There has been other, related, work done 

in the telecommunications literature on network design and cost allocation problems ( Bird, 1976; Granot and Huberman, 

1981; Bergantiños and Vidal-Puga, 2010 ) but that literature focuses on designing least-cost networks, like spanning trees and 

Steiner networks, to connect users. To sum up, despite some similarities in the literature, the only prior work that addresses 

our dual problem of determining a fair and mutually acceptable cost allocation scheme in a shortest path network design 

application is Rosenthal (2013) ; the present paper extends that work from the special case of tree networks (that is, which 

do not contain cycles) to general network structures, strengthens the results, and provides an application to fare pricing in 

an actual rapid-transit system. 

To understand the significance of this generalization, we need to briefly discuss what it would mean for some real-world 

examples. A cost allocation for tree networks would apply to “hub-and-spoke” transit systems, for example, in Philadelphia, 

Chicago (with the exception of the downtown “Loop” circuit) and Los Angeles (with one exception). Far more common, 

however, are transit systems that admit cycles, i.e., multiple point-to-point routes. These transit systems include Barcelona, 

London, New York, Paris, São Paulo, Washington D.C., and Tokyo. The preponderance of systems that are not hub-and-spoke 

in structure speaks to the importance of developing a satisfactory cost allocation method in the more general case. 

In Section 2 we introduce conditions that a cost allocation solution for a shortest path transportation network ought 

to satisfy, along with the cooperative game model. In Section 3 we develop an equal cost sharing solution, which is an 

intuitively appealing and efficiently computable allocation. We demonstrate that the equal cost sharing solution not only 

coincides with the Shapley value of the cost sharing network game and is an element of the core of the game, but also 

satisfies the specified conditions and, further, is the unique solution to do so. In Section 4 we apply the equal cost share 

allocation procedure to the Washington, D.C. metro system and compare the derived passenger costs to the actual fares. 

In Section 5 we briefly show how the cost allocation procedure can be easily modified as the user distribution among 

locations changes over time, or as the network itself undergoes expansion. In addition we consider some policy implications 

of applying the equal cost share model, and we conclude with suggestions for further research. 

2. The underlying model, solution conditions, and the cooperative game approach 

2.1. The network model 

To develop our model, we are given a metropolitan area M that contains a finite set N = {1, . . ., n} of stations , or nodes . 

There exists a set U of users , partitioned into user sets U i , i = 1, . . ., n, such that U i ∩ U j =∅ for all i � = j, and where each U i 

is mapped to the station i (for i = 1, . . ., n) where those users start their individual origin-destination journeys. Each user 

takes a single trip in the transit system. For any user in set U i , we say that station i is its origin station (or simply, origin ). 

We represent an existing transportation network for M by an undirected graph G = (N,E), where E is a set of edges , or links 

(s,t) between pairs of stations s and t with s,t ∈ N. We assume that there do not exist loops or parallel edges; further, we also 

assume that every edge in E is included in at least one origin-destination journey. We note that it is possible to generalize 

our model and all our results to directed networks; we discuss this in more detail in Section 5 below. 

Consider user set U i , for all i = 1, . . ., n. Let U i be partitioned into sets U ij for all j ∈ N such that j � = i, where each user in 

U ij will make a single trip in G from their origin station i to destination station j. With respect to network design, we assume 

that each individual user u ij ∈ U ij has a utility function that is based solely on his or her travel time between i and j, such 

that this utility strictly increases as travel time decreases. The users are assumed to be identical except for their origins, and, 

in order to maximize their utility, wish to travel from their origin stations i to their destinations j in the shortest possible 

amount of time. For any subset U 

′ ⊆U of users, let N 

d ⊆N be the set of destinations over all users in U 

′ , let N 

h ⊆N be the 
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